Cover Image

Reinventing the Social Scientist and Humanist in the Era of Big Data: A Perspective from South African Scholars

This book explores the big data evolution by interrogating the notion that big data is a disruptive innovation that appears to be challenging existing epistemologies in the humanities and social sciences. Exploring various (controversial) facets of big data such as ethics, data power, and data justice, the book attempts to clarify the trajectory of the epistemology of (big) data-driven science in the humanities and social sciences.

Authors:
Susan Brokensha (ed)
University of the Free State
https://orcid.org/0000-0001-6166-3981
Eduan Kotzé (ed)
University of the Free State
https://orcid.org/0000-0002-5572-4319
Burgert A Senekal (ed)
University of the Free State
https://orcid.org/0000-0002-1385-9258

Product details

Chapters

  • 1. The (fuzzy) origins of big data and the dangers of ignoring history
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 2. Locating big data in the (digital) humanities and (computational) social sciences
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 3. Big Data, big despair: Myths debunked and lessons learned
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 4. Big Data needs big ethics
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 5. Does big data visualisation make our endeavours less humanistic?
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 6. Data power in the era of big data: Friend or foe?
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 7. The place of qualitative data analysis software (QDAS) programmes in a big data world
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 8. The nitty-gritty: Big data infrastructure
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 9. Leveraging social scientific and humanistic expertise in the world of (big) data science
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal
  • 10. An example: Big data analysis in the humanities in South Africa
    Susan Brokensha, Eduan Kotzé, Burgert A Senekal

References

Abreu A & Acker A. 2013. Context and collection: A research agenda for small data. iConference 2013 Proceedings:549-554. https://dx.doi.org/10.9776/13275

Acquisti A & Gross R. 2006. Imagined communities: Awareness, information sharing, and privacy on the Facebook. In: G Danezis & P Golle (eds). Privacy enhancing technologies. Berlin, Heidelberg: Springer. 36-58. https://doi.org/10.1007/11957454

Adamson L & Bakeman R. 1982. Affectivity and reference: Concepts, methods, and techniques in the study of communication development of six- to 18-month-old infants. In: T Field & A Fogel (eds). Emotion and early interaction. Hillsdale, New Jersey: Lawrence Erlbaum. 213-236.

Admin. 2013. What the hell is big data anyway?. FabCom, 20 November. Available: https://www.fabcomlive.com/strategic-marketing-agency/wp-content/uploads/What-The-Hell-Big-Data-White-Paper.pdf (Accessed 8 May 2018).

Aggarwal CC. (ed). 2013. Managing and mining sensor data. Berlin, Germany: Springer. https://doi.org/10.1007/978-1-4614-6309-22

Agrawal R & Nyamful C. 2016. Challenges of big data storage and management. Global Journal of Information Technology, 6(1):1-10. https://doi.org/10.18844/gjit.v6i1

Alvarez W. 2016. A most improbable journey: A big history of our planet and ourselves. New York, NY: W.W. Norton & Company. https://doi.org/10.1016/j.pgeola.2016.10.0088

Ambrose ML. 2015. Lessons from the avalanche of numbers: Big data in historical perspective. ISJLP, 11(2):201-277.

Ambrosio C. 2015. Objectivity and representative practices across artistic and scientific visualization. In: A Carusi, AS Hoel, T Webmoor & S Woolgar (eds). Visualization in the age of computerization. London, UK: Routledge. 118-144. https://doi.org/10.4324/97802030669733

Amoore L & Piotukh V. 2015. Life beyond big data: Governing with little analytics. Economy and Society, 44(3):341-366.

https://doi.org/10.1080/03085147.2015.1043793

Anderson C. 2008. The end of theory: The data deluge makes the scientific method obsolete. Wired, 23 June. Available: https://www.wired.com/2008/06/pb-theory/ (Accessed 21 May 2017).

Anderson C. 2015. Creating a data-driven organization: Practical advice from the trenches. Sebastopol, CA: O’Reilly Media, Inc.

Anderson P, Bowring J, McCauley R, Pothering R & Starr C. 2014. An undergraduate degree in data science: Curriculum and a decade of implementation experience. In: J Dougherty, K Nagel, A Decker, K Eiselt (eds). Proceedings of the 45th ACM Technical Symposium on Computer Science Education. New York, NY: ACM:145-150. https://doi.org/10.1145/2538862.25389366

Ang CK, Embi MA & Yunus MM. 2016. Enhancing the quality of the findings of a longitudinal case study: Reviewing trustworthiness via ATLAS.ti. The Qualitative Report, 21(10):1855-1867.

Antonijević S. 2016. Amongst digital humanists: An ethnographic study of digital knowledge production. New York, NY: Palgrave Macmillan. https://doi.org/10.1057/9781137484185

Appel O, Chiclana F, Carter J & Fujita H. 2016. A hybrid approach to the sentiment analysis problem at sentence level. Knowledge-Based Systems, 108:110-124. https://doi.org/10.1016/j.knosys.2016.05.040

Aradau C & Blanke T. 2017. Politics of prediction: Security and the time/space of governmentality in the age of big data. European Journal of Social Theory, 20(3):373-391. https://doi.org/10.1177/1368431016667623

Arboleda SA & Dewan A. 2017. Unveiling storytelling and visualization of data. In: R Smedinga, R Biehl & F Kramer (eds). Proceedings of the 14th SC@RUG 2016-2017. Groningen, Netherlands: Rijksuniversiteit:38-42.

Armbrust M, Das T, Davidson A, Ghodsi A, Or A, Rosen J, Stoica I, Wendell P, Xin R & Zaharia M. 2015. Scaling spark in the real world: Performance and usability. In: C Li & V Markl (eds). Proceedings of the VLDB Endowment, 8(12):1840-1843. https://doi.org/10.14778/2824032.2824080

Aslam S. 2018. Facebook by the numbers: Stats, demographics & fun facts. Omnicore, 1 January. Available: https://www.omnicoreagency.com/facebook-statistics/ (Accessed 18 May 2018).

Assay M. 2015. A new breed of database hopes to blend the best of NoSQL and RDBMS. Tech Republic, 21 September. Available: https://www.techrepublic.com/article/a-new-breed-of-database-hopes-to-blend-the-best-of-nosql-and-rdbms/ (Accessed 6 July 2018).

Auerbach E. 1953. Mimesis. Translated by WR Trask. Princeton: Princeton University Press.

Austrian GD. 1982. Herman Hollerith: Forgotten giant of information processing. USA: Columbia University Press.

Avgerinou MD & Pettersson R. 2011. Toward a cohesive theory of visual literacy. Journal of Visual Literacy, 30(2):1-19. https://doi.org/10.1080/23796529.2011.116746877

Baatjes IG. 2005. Neoliberal fatalism and the corporatisation of higher education in South Africa. Quarterly Review of Education & Training in South Africa, 12(1):25-33.

Bacon F. 1853. Novum organum in The physical and metaphysical works of Lord Bacon, Book I. London, UK: H.G. Bohn.

Bail CA. 2014. The cultural environment: Measuring culture with big data. Theory and Society, 43(3-4):465-482. https://doi.org/10.1007/s11186-014-9216-5

Bailey M. 2016. Will big data diminish the role of the human in decision making? In: CR Sugimoto, HR Ekbia & M Mattioli (eds). Big data is not a monolith. Cambridge, MA: The MIT Press. 164-180.

Bajaj P, Kavidayal M, Srivastava P, Akhtar MN & Kumaraguru P. 2016. Disinformation in multimedia annotation: Misleading metadata detection on You Tube. In: MF Moens, K Pastra, K Saenko & T Tuytelaars (eds). Proceedings of the 2016 ACM Workshop on Vision and Language Integration Meets Multimedia Fusion. New York, NY: ACM:53-61. https://doi.org/10.1145/2983563.2983569

Barnes TJ. 2013. Big data, little history. Dialogues in Human Geography, 3(3):297-302. https://doi.org/10.1177/2043820613514323

Barnett M. 2008. Humanitarianism as a scholarly vocation. In: M Barnett & TG Weiss (eds). Humanitarianism in question: Politics, power, ethics. USA: Cornell University Press. 235-263.

https://doi.org/10.7591/9780801461538-012

Barton S. 2018. Big data and humanitarianism. Innovation Enterprise, 26 May. Available: https://channels.theinnovationenterprise.com/articles/127-big-data-and-humanitarianism (Accessed 29 May 2018).

Basha SJ, Kumar PA & Babu SG. 2016. Storage and processing speed for knowledge from enhanced cloud computing with Hadoop frame work: A survey. IJSRSET, 2(2):126-132.

Baškarada S. & Koronios A. 2017. Unicorn data scientist: The rarest of breeds. Program, 51(1):65-74. https://doi.org/10.1108/PROG-07-2016-0053

Batrinca B & Treleaven PC. 2015. Social media analytics: A survey of techniques, tools and platforms. AI & SOCIETY, 30(1):89-116. https://doi.org/10.1007/s00146-014-0549-4

Beaver D, Kumar S, Li HC, Sobel J & Vajgel P. 2010. Finding a needle in Haystack: Facebook’s photo storage. OSDI, 10(2010):1-8.

Bechmann A. 2014. Non-informed consent cultures: Privacy policies and app contracts on Facebook. Journal of Media Business Studies 11(1): 21-38. https://doi.org/10.1080/16522354.2014.11073574

Beer D. 2016a. How should we do the history of big data? Big Data & Society: 1-10. Available: http://journals.sagepub.com/doi/pdf/10.1177/2053951716646135 (Accessed 17 April 2018). https://doi.org/10.1177/2053951716646135

Beer D. 2016b. Metric power. London, UK: Palgrave Macmillan. https://doi.org/10.1057/978-1-137-55649-3

Begoli E. & J. Horey. 2012. Design principles for effective knowledge discovery from big data. In Software architecture (WICSA) and European conference on software architecture (ECSA), 2012 Joint working IEEE/IFIP conference. Helsinki, Finland: IEEE. 215-218. https://doi.org/10.1109/WICSA-ECSA.212.32

Bell G, Hay T & Szalay A. 2009. Beyond the data deluge. Science, 323(5919):1297-1298. https://doi.org/10.1126/science.1170411

Bettencourt LMA, Lobo J, Helbing D, Kühnert C & West GB. 2007. Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academcy of Sciences, 104(17):7301-7306.

Beverly B. 2018. Capta: The data of conscious experience. InformationWeek, 8 August. Available: https://www.informationweek.com/big-data/big-data-analytics/capta-the-data-of-conscious-experience/a/d-id/282625? (Accessed 8 May 2018).

Bian J, Yang H, Zhang H & Chua TS. 2015. Multimedia summarization for social events in microblog stream. IEEE Transactions on Multimedia, 17(2):216-228. https://doi.org/10.1109/TMM.2014.2384912

Biederman I. 1981. On the semantics of a glance at a scene. In: M Kubovy and J Pomerantz (eds). Perceptual organisation. Hillsdale: Lawrence Erlbaum Associates. 213-253. https://doi.org/10.4324/9781315512372-8

Black D. 2010. Big data: Dealing with the data tsunami. SQLstream, June. Available: http://sqlstream.com/2010/06/big-data-dealing-with-the-data-tsunami/ (Accessed 7 December 2017).

Blank D, Henrich A & Kufer S. 2016. Using summaries to search and visualize distributed resources addressing spatial and multimedia Features. Datenbank-Spektrum, 16(1):67-76. https://doi.org/10.1007/s13222-015-0210-5

Blaser T. 2012. ‘I don’t know what I am’: The end of Afrikaner nationalism in post-apartheid South Africa. Transformation: Critical Perspectives on Southern Africa, 80(1):1-21. https://doi.org/10.1353/trn.2012.0048

Blei DM & Smyth P. 2017. Science and data science. PNAS, 114(33):8689-8692. https://doi.org/10.1073/pnas.1702076114

Bloor R. 2012. Are the data scientists future CEOs?. Inside Analysis, 12 December. Available: https://insideanalysis.com/2012/12/are-the-data-scientists-future-ceos/ (Accessed 9 September 2018).

Boehnert J. 2016. Data visualisation does political things. DRS2016: Design + research + society: Future-focused thinking. Brighton, UK: Design Research Society. https://doi.org/10.21606/drs.2016.387

Boellstorff T. 2013. Making big data, in theory. First Monday, 18(10):1-17. Available: http://ojphi.org/ojs/index.php/fm/article/view/4869/3750 (Accessed 20 March 2018). https://doi.org/10.5210/fm.v18i10.4869

Bohn RE, Short JE & Baru C. 2011. How much information? 2010 report on enterprise server information. Global Industry Center. University of California, San Diego. Available: http://clds.sdsc.edu/sites/clds.sdsc.edu/files/pubs/ESI-Report-Jan2011.pdf (Accessed 8 December 2017).

Bollier D. 2010. The promise and peril of big data. Washington, DC: The Aspen Institute.

Borenstein J & Arkin R. 2016. Robotic nudges: The ethics of engineering a more socially just human being. Science and Engineering Ethics, 22(1):31-46. https://doi.org/10.1007/s11948-015-9636-2

Borgo R, Abdul-Rahman A, Mohamed F, Grant PW, Reppa I, Floridi L & Chen M. 2012. An empirical study on using visual embellishments in visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12):2759-2768. https://doi.org/10.1109/TVCG.2012.197

Borkin MA. 2014. Perception, cognition, and effectiveness of visualizations with applications in science and engineering. Unpublished Doctoral thesis. USA: Harvard University.

Boullier D. 2016. Big data challenges for the social sciences: From society and opinion to replications. arXiv preprint arXiv:1607.05034. Available: https://arxiv.org/abs/1607.05034 (Accessed 13 December 2017).

Bowker GC. 2005. Memory practices in the sciences. Cambridge, MA: MIT Press.

Bowker GC. 2014. The theory/data thing. International Journal of Communication, 8(2043):1795-1799.

Boyd D & Crawford K. 2012. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5):662-679. https://doi.org/10.1080/1369118X.2012.678878

Bradley AJ, Mehta H & Collins C. 2016. Visualization, digital humanities, and the problem of instrumentalism. Workshop on visualization for the digital humanities, IEEE VIS. 24 October 2016. Baltimore, Maryland, USA: IEEE. 1-4.

Brandt PT, Freeman JR & Schrodt PA. 2014. Evaluating forecasts of political conflict dynamics. International Journal of Forecasting, 30(4):944-962. https://doi.org/10.1016/j.ijforecast.2014.03.014

Brandtzæg P. 2012. Social networking sites: Their users and social implications – a longitudinal study. Journal of Computer-Mediated Communication, 17(4): 467–488. https://doi.org/10.1111/j.1083-6101.2012.01580.x

Bravo MJ & Farid H. 2004. Search for a category target in clutter. Perception, 33(6):643-652. https://doi.org/10.1068/p5244

Bresciani S & Eppler MJ. 2015. The pitfalls of visual representations: A review and classification of common errors made while designing and interpreting visualizations. Sage Publications Open, 5(4):1-14. https://doi.org/10.1177/2158244015611451

Breytenbach B. 1984. The true confessions of an albino terrorist. Cape Town, South Africa: Taurus.

Brimblecombe P. 2017. Early episodes. In: P Brimblecombe (ed). Air pollution episodes. London, UK: World Scientific Publishing Europe Ltd. 11-26. https://doi.org/10.1142/q0098

Brittz K. 2018. The bigger picture: What digital humanities can learn from data art. In: A. Du Preez (ed). Voices from the South: Digital arts and humanities. Cape Town, South Africa: AOSIS. 177-205. https://doi.org/10.4102/aosis.2018.BK79.07

Brokensha SI & Conradie T. 2016. Facilitating critical enquiry about race and racism in a digital environment: Design considerations. South African Journal of Higher Education, 30(1):17-41. https://doi.org/10.20853/30-1-550

Brown MS. 2017. You don’t need a fancy education to start a data analytics career. Forbes, 29 June 2017. Available: https://www.forbes.com/sites/metabrown/2017/06/29/you-dont-need-a-fancy-education-to-start-a-data-analytics-career/#a06e2e930181 (Accessed 10 September 2018).

Brown, NM, Mendenhall R, Black ML, van Moer MV, Zerai A & Flynn K. 2016. Mechanized margin to digitized center: Black feminism’s contributions to combatting erasure within the digital humanities. International Journal of Humanities and Arts Computing, 10(1):110-125. https://doi.org/10.3366/ijhac.2016.0163

Brown W. 2011. Neoliberalized knowledge. History of the Present, 1(1):113-129. https://doi.org/10.5406/historypresent.1.1.0113

Brudener H. 2018. Algorithms have been around for 4,000 years. Communications of the ACM, 13 July. Available: https://cacm.acm.org/blogs/blog-cacm/229543-algorithms-have-been-around-for-4000-years/fulltext (Accessed 25 July 2018).

Bryson S, Kenwright D, Cox M, Ellsworth D & Haimes R. 1999. Visually exploring gigabyte data sets in real time. Communications of the ACM, 42(8):82-90. https://doi.org/10.1145/310930.310977

Buhl HU, Röglinger M, Moser F & Heidemann J. 2013. Big data: A fashionable topic with(out) sustainable relevance for research and practice? Business & Information Systems Engineering, 5(2):65-69. https://doi.org/10.1007/s12599-013-0249-5

Burdick A, Drucker J, Lunenfeld P, Presner T & Schnapp J. 2012. Digital_Humanities. Cambridge, MA: MIT Press.

Burkhard R & Eppler M. 2005. Knowledge visualization. In: DG Schwartz (ed). Encyclopedia of knowledge management. Hershey, PA: IGI. 551-560. https://doi.org/10.4018/978-1-59140-573-3.ch072

Burke I & van Heerden RP. 2017. Treating personal data like digital pollution. In: M Scanlon & LK Neihn-An (eds). ECCWS 2017 16th European conference on cyber warfare and security. Reading, UK: Academic Conferences and Publishing Limited. 82-91.

Burns R. 2014. Moments of closure in the knowledge politics of digital humanitarianism. Geoforum, 53:51-62. https://doi.org/10.1016/j.geoforum.2014.02.002

Cai L & Zhu Y. 2015. The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14(2):1-10. https://doi.org/10.5334/dsj-2015-002

Calude CS & Longo G. 2017. The deluge of spurious correlations in big data. Foundations of Science, 22(3):595-612. https://doi.org/10.1007/s10699-016-9489-4

Cao L. 2015. Metasynthetic computing and engineering of complex systems. London, UK: Springer. https://doi.org/10.1007/978-1-4471-6551-4

Cao L. 2016. Data science and analytics: A new era. International Journal of Data Science and Analytics, 1(1):1-2. https://doi.org/10.1007/s41060-016-0006-1

Cardano G. 1953. The Book on games of chance. Translated by SH Gould. New York, NY: Princeton University Press. https://doi.org/10.1017/S0950563600000993

Carney M. 2018. Leave no dark corner. ABC. Available: https://www.abc.net.au/news/2018-09-18/china-social-credit-a-model-citizen-in-a-digital-dictatorship/10200278 (Accessed 31 October 2018).

Cattell R. 2011. Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4):12-27. https://doi.org/10.1145/1978915.1978919

Cawthon N & Moere AV. 2007. The effect of aesthetic on the usability of data visualization. In: E Banissi, RA Burkhard, G Grinstein, U Cvek, M Trutschl, LStuart, TG Wyeld, G Andrienko, J Dykes, M Jern, D Groth & A Ursyn (eds). Information visualization, 2007. IV’07. 11th international conference. Los Alamitos, CA: IEEE. 637-648. https://doi.org/10.1109/IV.2007.147

Celko J. 2014. Complete guide to NoSQL. Waltham, MA: Morgan Kaufmann. https://doi.org/10.1016/C2012-0-03536-3

Chaka C. 2019. Re-imagining literacies and literacies pedagogy in the context of semio-technologies. Nordic Journal of Digital Literacy, 14(1-2):54-69. https://doi.org/10.18261/issn.1891-943x-2019-01-02-05

Chaka C. Forthcoming. Skills, competencies and literacies attributed to 4IR/Industry 4.0: Scoping review. International Federation of Library Associations and Institutions Journal.

Chambers D. 2019. This is what really happened on Clifton Fourth Beach: Security firm boss. Timeslive, 5 January. Available: https://www.timeslive.co.za/news/south-africa/2019-01-05-this-is-what-really-happened-on-clifton-fourth-beach-security-firm-boss/ [Accessed 8 January 2019].

Chandio AA, Tziritas N & Xu CZ 2015. Big-data processing techniques and their challenges in transport domain. ZTE Communications, 1(010):1-21. https://dx.doi.org/10.3969/j.issn.1673-5188.2015.01.007

Chandler R, Anstey E & Ross H. 2015. Listening to voices and visualizing data in qualitative research: Hypermodal dissemination possibilities. Sage Publications Open, 5(2):1-8. https://doi.org/10.1177/2158244015592166

Chatfield AT, Shlemoon, VN, Redublado W & Rahman F. 2014. Data scientists as game changers in big data environments. In: W Wang & D. Pauleen (eds). Proceedings of the 25th Australasian Conference on Information Systems. Auckland, New Zealand: Australasian Conference on Information Systems:1-11.

Chen C. 2005. Top 10 unresolved information visualization problems. IEEE Computer Graphics and Applications, 25(4):12-16. https://doi.org/10.1109/MCG.2005.91

Chen CP & Zhang Y. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275:314-347. https://doi.org/10.1016/j.ins.2014.01.015

Chen H & Zhou L. 2017. The myth of big data: Chinese advertising practitioners’ perspective. International Journal of Advertising: 1-17. https://doi.org/10.1080/02650487.2017.1340865

Chen M, Mao S & Liu Y. 2014. Big data: A survey. Mobile Networks and Applications, 19(2):171-209. https://doi.org/10.1007/s11036-013-0489-0

Chen M, Mao S, Zhang Y & Leung VCM. 2014. Related technologies. In: M Chen, S Mao, VCM Leung & Y Zhang (eds). Big data: Related technologies, challenges and future prospects. Heidelberg: Springer. 11-18. https://doi.org/10.1007/978-3-319-06245-7

Cheng Q, Li TMH, Kwok CL, Zhu T & Yip PSF. 2017. Assessing suicide risk and emotional distress in Chinese social media: a text mining and machine learning study. Journal of Medical Internet Research, 19(7):e243. https://doi.org/10.2196/jmir.7276

Chen Q, Zobel J, Zhang X & Verspoor K. 2016. Supervised learning for detection of duplicates in genomic sequence databases. PloS One, 11(8):e0159644. Available: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159644 (Accessed 25 April 2018). https://doi.org/10.1371/journal.pone.0159644

Chessell M. 2014. Ethics for big data and analytics. Somers: IBM Corporation. Available: http://www.ibmbigdatahub.com/sites/default/files/whitepapers_reports_file/TCG%20Study%20Report%20-%20Ethics%20for%20BD&A.pdf (Accessed 11 December 2017).

Cheyney MJ. 2008. Homebirth as systems-challenging praxis: Knowledge, power, and intimacy in the birthplace. Qualitative Health Research, 18(2):254–267. https://doi.org/10.1177/1049732307312393

Choi J & Tausczik Y. 2017. Characteristics of collaboration in the emerging practice of open data analysis. In: CP Lee, S Poltrock, L Barkhuus, M Borges & W Kellog (eds). Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. New York, NY: ACM:835-846. https://doi.org/10.1145/2998181.2998265

Chorley, JC. 2016. Plasma physics computations on emerging hardware architectures. Unpublished Doctoral thesis. USA: Harvard University. UK: Durham University. Available: http://etheses.dur.ac.uk/11912/ (Accessed: 14 November 2018).

Chrisomalis S. 2009. The origins and coevolution of literacy and numeracy. In: DR Olson & N Torrance (eds). The Cambridge handbook of literacy. New York, NY: Cambridge University Press. 59-74. https://doi.org/10.1017/CBO9780511609664.005

Chu X & Ilyas IF. 2016. Qualitative data cleaning. In: S Chaudhuri & J Haritsa (eds). Proceedings of the VLDB Endowment, 9(13):1605-1608. https://doi.org/10.14778/3007263.3007320

Chung F. 2018. ‘The time for reconciliation is over’: South Africa votes to confiscate white-owned land without compensation. News.com.au, 28 February. Available: https://www.news.com.au/finance/economy/world-economy/the-time-for-reconciliation-is-over-south-africa-votes-to-confiscate-whiteowned-without-compensation/news-story/a8a81155995b1adc1c399d3576c4c0bc (Accessed 8 Januarie 2019).

Chutel L. 2018. Why googling squatter camps in South Africa returns pictures of white people. Quartz Africa, 15 June. Available: https://qz.com/africa/1306782/why-googling-squatter-camps-in-south-africa-returns-pictures-of-white-people/ (Accessed: 7 February 2019).

Cimpanu C. 2019. Google search results listings can be manipulated for propaganda. ZDNet, 9 January. Available: https://www.zdnet.com/meet-the-team/us/catalin.cimpanu/ (Accessed 6 March 2019).

Clare J & Sivil R. 2014. Autonomy lost: The bureaucratisation of South African HE. South African Journal of Higher Education, 28(1):60-71. https://doi.org/10.5840/ijap2014121735

Clark D. 2013. When big data goes bad: 6 epic fails. Blogspot, 7 November. Available: http://donaldclarkplanb.blogspot.co.za/2013/11/when-big-data-goes-bad-6-epic-fails.html (Accessed 8 May 2018).

Clement T. 2012. Methodologies in the digital humanities for analyzing aural patterns in texts. In: JE Mai, J Furner & P Marty (eds). Proceedings of the 2012 iConference. New York, NY: ACM:287-293. https://doi.org/10.1145/2132176.2132213

Cohen S. 2013. Nudging and informed consent. The American Journal of Bioethics, 3(6):3-11. https://doi.org/10.1080/15265161.2013.781704

Colleoni E, Rozza A & Arvidsson A. 2014. Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2):317-332. https://doi.org/10.1111/jcom.12084

Colombo P & Ferrari E. 2015. Privacy aware access control for big data: A research roadmap. Big Data Research, 2(4):45-154. https://doi.org/10.1016/j.bdr.2015.08.001

Concessao R. 2017. Big data analytics: Derive insights. USA: CreateSpace Independent Publishing Platform.

Convery I & Cox D. 2012. A review of research ethics in Internet-based research. Practitioner Research in Higher Education, 6(1):50-57.

Cooper SB. 2004. Computability theory. New York, NY: Chapman and Hall/CRC Press.

Cope B & Kalantzis M. 2015. Interpreting evidence-of-learning: Educational research in the era of big data. Open Review of Educational Research, 2(1):218-239. https://doi.org/10.1080/23265507.2015.1074870

Cope DG. 2014. Computer-assisted qualitative data analysis software. Oncology Nursing Forum, 41(3):322-323. https://doi.org/10.1188/14.ONF.322-323

Coveney V, Dougherty ER & Highfield RR. Big data need big theory too. Philosophical Transactions, 374(2080):1-11. https://doi.org/10.1098/rsta.2016.0153

Cox M & Ellsworth D. 1997. Application-controlled demand paging for out-of-core visualization. In: R Yagel & H Hagen (eds). Proceedings of the 8th Conference on Visualization ’97. Los Alamitos, CA: IEEE:235-244. https://doi.org/10.1109/VISUAL.1997.6638888

Craik FI. 2014. Effects of distraction on memory and cognition: A commentary. Frontiers in Psychology, 5:1-4. https://doi.org/10.3389/fpsyg.2014.00841

Crawford K. 2009. Following you: Disciplines of listening in social media. Continuum, 23(4): 525-535. https://doi.org/10.1080/10304310903003270

Crawford K, Miltner K & Gray M. 2014. Critiquing big data: Politics, ethics, epistemology. International Journal of Communication, 8:1663-1672.

Crawford K & Schultz J. 2014. Big data and due process: Toward a framework to redress predictive privacy harms. Boston College Law Review, 55(1): 93-128. https://dx.doi.org/sp.2007.54.1.23

Creighton JH. 2012. A first course in probability models and statistical inference. USA: Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-8540-8

Cresci S, Tesconi M, Cimino A & Dell’Orletta F. 2015. A linguistically-driven approach to cross-event damage assessment of natural disasters from social media messages. In: A Gangemi, S Leonardi & A Panconesi (eds). Proceedings of the 24th International Conference on World Wide Web. New York, NY: ACM:1195-1200. https://doi.org/10.1145/2740908.2741722

Cukier K & Mayer-Schönberger V. 2013. The rise of big data: How it’s changing the way we think about the world. Foreign Affairs, 92:28-40. https://doi.org/10.2469/dig.v43.n4.65

Dagum L & Menon R. 1998. OpenMP: An industry standard API for shared-memory programming. IEEE Computational Science & Engineering, 5(1):46-55. https://doi.org/10.1109/99.660313

Dalton CM, Taylor L & Thatcher J. 2016. Critical data studies: A dialog on data and space. Big Data & Society, 3(1):1-9. https://doi.org/10.1177/2053951716648346

Dammeier F, Moore JR, Hammer C, Haslinger F & Loew S. 2016. Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. Journal of Geophysical Research: Earth Surface, 121(2):351-371. https://doi.org/10.1002/2015JF003647

Daniel B. 2015. Big data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5):904-920. https://doi.org/10.1111/bjet.12230

Darnton R. 2000. An early information society: News and the media in eighteenth-century Paris. American Historical Association, 5 January. Available: https://www.historians.org/about-aha-and-membership/aha-history-and-archives/presidential-addresses/robert-darnton (Accessed 17 April 2018). https://doi.org/10.2307/26524333

Databricks. 2016. Apache Spark ecosystem. Available: https://databricks.com/spark/about (Accessed 21 June 2016).

Daugherty J. & Mentzer N. 2008. Analogical reasoning in the engineering design process and technology education applications. Journal of Technology Education, 19(2):7-21.

Davenport T. 2014. Big data at work: Dispelling the myths, uncovering the opportunities. USA: Harvard Business Review Press. https://doi.org/10.15358/9783800648153

Davenport T, Barth H & Bean R. 2012. How ‘big data’ is different. MIT Sloan Management Review, 54:22-24.

Davenport T & Dyché J. 2013. Big data in big companies. International Institute for Analytics, 3:1-31.

Davenport T & Patil DJ. 2012. Data scientist: The sexiest job of the 21st century. Harvard Business Review, October. Available: http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century (Accessed 9 September 2018).

Davis K. 2012. Ethics of big data: Balancing risk and innovation. USA: O’Reilly Media, Inc. https://doi.org/10.1109/CBI.2015.27

Dawson P. 2014. Our anonymous online research participants are not always anonymous: Is this a problem?. British Journal of Educational Technology, 45(3): 428-437. https://doi.org/10.1111/bjet.12144

Daylight EG. 2015. Towards a historical notion of ‘Turing – The father of computer science’. History and Philosophy of Logic, 36(3):205-228. https://doi.org/10.1080/01445340.2015.1082050

Dean, J. 2014. Big data: Accumulation and enclosure. Theory & Event, 19(3):1-22.

Dean J & Ghemawat S. 2008. MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1):107-113. https://doi.org/10.1145/1327452.1327492

Decock W. 2013. Theologians and contract law: The moral transformation of the Ius Commune (ca. 1500-1650). Leidin: Brill. https://doi.org/10.1163/15718190-08134P20

DeLyser D & Sui D. 2013. Crossing the qualitative-quantitative divide II: Inventive approaches to big data, mobile methods, and rhythmanalysis. Progress in Human Geography, 37(2):293-305. https://doi.org/10.1177/0309132512444063

De Mauro A, Greco M, Grimaldi M & Nobili G. 2016. Beyond data scientists: A review of big data skills and job families. In: JC Spender, G Schiuma & JR Noennig (eds). Proceedings of IFKAD 2016 Towards a New Architecture of Knowledge: Big data, Culture and Creativity. Dresden, Germany: IFKAD:1844-1857.

Demchenko Y, Grosso P, De Laat C & Membrey P. 2013. Addressing big data issues in scientific data infrastructure. Paper presented at the 2013 International Conference on Collaboration Technologies and Systems (CTS). 20-24 May 2013. San Diego, USA: CTS. 48-55. https://doi.org/10.1109/CTS.2013.6567203

De Nooy W, Mrvar A & Batagelj V. 2018. Exploratory social network analysis with Pajek. USA: Cambridge University Press. https://doi.org/10.1017/9781108565691

De Smedt TD & Daelemans W. 2012. Pattern for Python. Journal of Machine Learning Research, 13:2063-2067.

Desmet B & Hoste V. 2013. Emotion detection in suicide notes. Expert Systems with Applications, 40(16):6351-6358. https://doi.org/10.1016/j.eswa.2013.05.050

Desouza KC & Jacob B. 2017. Big data in the public sector: Lessons for practitioners and scholars. Administration & Society, 49(7):1043-1064. https://doi.org/10.1177/0095399714555751

Desouza KC & Smith KL. 2014. Big data for social innovation. Stanford Social Innovation Review: 39-43. Available: https://communityengagement.uncg.edu/wp-content/uploads/2014/08/Big-Data-for-Social-Innovation.pdf (Accessed 25 April 2018).

Devens RM. 1865. Cyclopaedia of commercial and business anecdotes. New York, NY: D. Appleton and Company.

Dey L & Haque S. 2009. Opinion mining from noisy text data. International Journal on Document Analysis and Recognition (IJDAR), 12(3):205-226. https://doi.org/10.1007/s10032-009-0090-z

Dhar V. 2013. Data science and prediction. Communications of the ACM, 56(12):64–73. https://doi.org/10.1145/2500499

Diebold FX. 2003. ‘Big data’ dynamic factor models for macroeconomic measurement and forecasting. In: M Dewatripont, LP Hansen & S Turnovsky (eds). Advances in economics and econometrics. Eighth world congress of the Econometric Society. Cambridge: Cambridge University Press. 115-122. https://doi.org/10.1145/2500499

Diebold FX. 2012. On the origin(s) and development of the term “big data”. PIER Working Paper, 12(037). Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2152421 (Accessed 4 December 2017). https://doi.org/10.2139/ssrn.2152421

Dietz-Uhler B & Hurn JE. 2013. Using learning analytics to predict (and improve) student success: A faculty perspective. Journal of Interactive Online Learning, 12(1):17-26.

Dinakar K., Reichart R & Lieberman H. 2011. Modeling the detection of Textual Cyberbullying. The Social Mobile Web, 11(2):11-17.

Donoho D. 2017. 50 years of data science. Journal of Computational and Graphical Statistics, 26(4):745-766. https://doi.org/10.1080/10618600.2017.1384734

Doolittle PE, McNeill AL, Terry KP & Scheer SB. 2005. Multimedia, cognitive load and pedagogy. In: S Mishra & RC Sharma (eds). Interactive multimedia in education and training. London, UK: Idea Group, Inc. 184-212. https://doi.org/10.4018/978-1-59140-393-7.ch010

Doorn P. 2014. Big data in the humanities and social sciences. Science Node, 5 February. Available: https://sciencenode.org/feature/big-data-humanities-and-social-sciences.php (Accessed 8 May 2018).

Doyle AC. 1915. The valley of fear. New York, NY: George H. Doran Company.

Draucker CB & DS Martsolf. 2008. Storying childhood sexual abuse. Qualitative Health Research, 18(8):1034–1048. https://doi.org/10.1177/1049732308319925

Dudukovic NM, DuBrow S & Wagner AD. 2009. Attention during memory retrieval enhances future remembering. Memory & Cognition, 37(7):953-961. https://doi.org/10.3758/MC.37.7.953

Drucker J. 2011. Humanities approaches to graphical display. Digital Humanities Quarterly, 5(1):1-21.

Drucker J. 2014. Graphesis: Visual forms of knowledge production. Cambridge, MA: Harvard University Press.

Du Preez, A. (ed). 2018. Voices from the South: Digital arts and humanities. Cape Town: AOSIS. https://doi.org/10.4102/aosis.2018.BK79

Du Preez M. 2003. Pale native: Memories of a renegade reporter. Cape Town, South Africa: Zebra Press.

Du Toit P. 2018. Men on a mission: AfriForum’s Kriel And Roets en route to US to talk about land, crime. Huffpost, 2 May. Available: https://www.huffingtonpost.co.za/2018/05/02/men-on-a-mission-afriforums-kriel-and-roets-en-route-to-us-to-talk-about-land-crime_a_23425166/ (Accessed 8 January 2019).

Dwoskin E. 2014. Big data’s high priests of algorithms. The Wall Street Journal, 11 August. Available: https://datascienceguru1.wordpress.com/2014/08/11/big-datas-high-priests-of-algorithms-wall-street-journal/ (Accessed 9 September 2018).

Eckerson W. 2012. Big data analytics: Profiling the use of analytical platforms in user organisations. BeyeNetwork. Available: http://docs.media.bitpipe.com/io_10x/io_103043/item_486870/Big%20Data%20AnalyticsMarkLogic.pdf (Accessed 11 November 2015).

Efron B. 2001. The statistical century. In: J Panaretos (ed). Stochastic musings: Perspectives from the pioneers of the late 20th century. New York, NY: Psychology Press. 29-44. https://doi.org/10.4324/9781410609120

Ellis G & Dix A. 2007. A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics, 13(6):1216-1223. https://doi.org/10.1109/TVCG.2007.70535

Eloff T. 2017. Who owns the land?. Politicsweb, 2 May Available: http://www.politicsweb.co.za/opinion/who-owns-the-land (Accessed 10 April 2018).

Enslen JA. 2016. Visual interpretations and humanistic interfaces. MATLIT: Materialidades da Literatura, 4(2): 279-282. https://doi.org/10.14195/2182-8830_4-2_14

Eppler MJ & Platts KW. 2009. Visual strategizing: The systematic use of visualization in the strategic-planning process. Long Range Planning, 42(1):42-74. https://doi.org/10.1016/j.lrp.2008.11.005

Equality Report 2017/2018. South African Human Rights Commission. Available: https://www.sahrc.org.za/home/21/files/SAHRC%20Equality%20Report%202017_18.pdf (Accessed 5 February 2019).

Eriksson U, Starrin B & Janson S. 2008. Long-term sickness absence due to burnout: Absentees’ experiences. Qualitative Health Research, 18(5):620–632. https://doi.org/10.1177/1049732308316024

Evans JSB, Over BT, David E & Handley SJ. 2005. Suppositions, extensionality, and conditionals: A critique of the mental model theory of Johnson-Laird and Byrne (2002). Psychological Review, 112(4):1040-1052. https://doi.org/10.1037/0033-295X.112.4.1040

Evers JC. 2015. Elaborating on thick analysis: About thoroughness and creativity in qualitative analysis. In Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 17(1):1-28. Available: http://www.qualitative-research.net/index.php/fqs/article/view/2369/3924 (Accessed 10 April 2018). http://dx.doi.org/10.17169/fqs-17.1.2369

Evers JC. 2018. Current issues in qualitative data analysis software (QDAS): A user and developer perspective. The Qualitative Report, 23(13):61-73.

Ewenstein B & Whyte JK. 2007. Visual representations as ‘artefacts of knowing’. Building Research & Information, 35(1):81-89. https://doi.org/10.1080/09613210600950377

Faggin F, Hoff ME, Mazor S & Shima, M. 1996. The history of the 4004. IEEE Micro, 16(6):10-20. https://doi.org/10.1109/40.546561

Fairfield J. & Shtein H. 2014. Big data, big problems: Emerging issues in the ethics of data science and journalism. Journal of Mass Media Ethics, 29(1):38-51. https://doi.org/10.1080/08900523.2014.863126

Fan C, Xiao F & Yan C. 2015. A framework for knowledge discovery in massive building automation data and its application in building diagnostics. Automation in Construction, 50:81-90. https://doi.org/10.1016/j.autcon.2014.12.006

Fan J, Han F & Liu H. 2014. Challenges of big data analysis. National Science Review, 1(2):293-314. https://doi.org/10.1093/nsr/nwt032

Faniel IM, Kriesberg A & Yakel E. 2012. Data reuse and sensemaking among novice social scientists. Proceedings of the American Society for Information Science and Technology, 49(1):1-10. https://doi.org/10.1002/meet.14504901068

Feldman R. 2013. Techniques and applications for sentiment analysis. Communications of the ACM, 56(4):82-89. https://doi.org/10.1145/2436256.2436274

Feldman Z & Sandoval M. 2018. Metric power and the academic self: Neoliberalism, knowledge and resistance in the British university. tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society, 16(1):214-233. https://doi.org/10.31269/triplec.v16i1.899

Felt M. 2016. Social media and the social sciences: How researchers employ big data analytics. Big Data & Society, 3(1):1-15. https://doi.org/10.1177/2053951716645828

Ferguson AR, Nielson JL, Cragin MH, Bandrowski AE & Martone ME. 2014. Big data from small data: Data-sharing in the ‘long tail’ of neuroscience. Nature Neuroscience, 17(11):1442-1448. https://doi.org/10.1038/nn.3838

Fernández-Cabana M, Jiménez-Féliz J, Alves-Pérez MT, Mateos R, Gómez-Reino Rodríguez I & García-Caballero A. 2015. Linguistic analysis of suicide notes in Spain. The European Journal of Psychiatry, 29(2):145-155. https://doi.org/10.4321/S0213-61632015000200006

Few S. 2006. Information dashboard design. Cambridge, MA: O’Reilly Media, Inc.

Fihlani P. 2018. Vicky Momberg: South African estate agent jailed for racist abuse. BBC News, 28 March. Available: https://www.bbc.com/news/world-africa-43567468 (Accessed 8 January 2019).

Fineberg D. 2016. Extract, transform, and load big data with Apache Hadoop. Intel, 19 February. Available: https://software.intel.com/en-us/articles/extract-transform-and-load-big-data-with-apache-hadoop (Accessed 28 May 2018).

Finlay S. 2014. Predictive analytics, data mining and big data: Myths, misconceptions and methods. New York, NY: Palgrave Macmillan. https://doi.org/10.1057/9781137379283

Fish S. 2012. Mind your ps and bs: The digital humanities and interpretation. nytimes.com, 23 January. Available: https://opinionator.blogs.nytimes.com/2012/01/23/mind-your-ps-and-bs-the-digital-humanities-and-interpretation/ (Accessed 4 March 2018).

Floridi L. 2016. On human dignity as a foundation for the right to privacy. Philosophy and Technology, 29(46):307-312. https://doi.org/10.1007/s13347-016-0220-8

Foote K. 2017. A brief history of big data. Dataversity, 13 December. Available: http://www.dataversity.net/brief-history-big-data/ (Accessed 8 May 2018).

Ford H. 2014. Big data and small: Collaborations between ethnographers and data scientists. Big Data & Society: 1-3. Available: http://journals.sagepub.com/doi/pdf/10.1177/2053951714544337 (Accessed 13 December 2017). https://doi.org/10.1177/2053951714544337

Forsythe A. 2011. The human factors of the conspicuous Babel fish; dyadic referencing through icons. Journal of Visual Literacy, 30(3):91-115. https://dx.doi.org/10.1080/23796529.2011.11674691

Forsythe G. 2012. Annales maximi. The encyclopedia of ancient history. USA: Blackwell Publishing Ltd. https://dx.doi.org/10.1002/9781444338386.wbeah08010

Forter C. 2017. Humanities graduates should consider data science. Towards Data Science, 31 August. Available: https://towardsdatascience.com/humanities-graduates-should-consider-data-science-d9fc78735b0c (Accessed 25 July 2018).

Franks B. 2015. Is big data analytics good or evil?. Venturabeat, 15 June. Available: https://venturebeat.com/2015/06/15/is-big-data-analytics-good-or-evil/ (Accessed 8 May 2018).

Frické M. 2015. Big data and its epistemology. Journal of the Association for Information Science and Technology, 66(4):651-661. https://doi.org/10.1002/asi.23212

Friendenthal J. 2015. Human capital development for big data in South Africa. Available: https://globalstatement2015.wordpress.com/2015/09/23/big-data-in-south-africa/ (Accessed 12 December 2017).

Friese S. 2014. Qualitative data analysis with ATLAS. ti. Thousand Oaks, CA: Sage Publications. https://doi.org/10.17583/qre.2016.2120

Friese S. 2016. Qualitative data analysis software: The state of the art. KWALON, 21(1): 34-45. Available: https://www.tijdschriftkwalon.nl/scripts/shared/artikel_pdf.php?id=KW-21-1-5 (Accessed 5 April 2018).

Froehlich A. 2017. Will edge computing replace the cloud?. 23 May 2017. InformationWeek, 23 May. Available: https://www.informationweek.com/cloud/will-edge-computing-replace-the-cloud/a/d-id/1328929 (Accessed 6 December 2017).

Fuller M. 2017. Big data, ethics and religion: New questions from a new science. Religions, 8(5):88-97. https://doi.org/10.3390/rel8050088

Fullestop. 2016. A peek into the Hadoop ecosystem. Fullestop, 5 April. Available: https://www.fullestop.com/blog/a-peek-into-the-hadoops-ecosystem/ (Accessed 21 May 2018).

Furner J. 2016. “Data”: The data. In: M Kelly & J Bielby (eds). Information cultures in the digital age. Wiesbaden: Springer VS. 287-306. https://doi.org/10.1007/978-3-658-14681-8_17

Gaillard M & Pandolfi S. 2017. CERN Data Centre passes the 200-petabyte milestone. CERN Document Server, 7 June. Available: http://cds.cern.ch/record/2276551 (Accessed 15 November 2018).

Gandomi A & Haider M. 2015. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2):137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Gangadharan S. 2012. Digital inclusion and data profiling. First Monday, 17(5):1-11. Available: http://journals.uic.edu/ojs/index.php/fm/article/view/3821/3199 (Accessed 17 March 2018). https://doi.org/10.5210/fm.v17i5.3821

Gao S, Li L, Li W, Janowicz K & Zhang Y. 2017. Constructing gazetteers from volunteered big geo-data based on Hadoop. Computers, Environment and Urban Systems, 61:172-186. https://doi.org/10.1016/j.compenvurbsys.2014.02.004

Gao X & Tao G. 2016. Ethical challenges in conducting text-based online applied linguistics research. In: P DeCosta (ed). Ethics in applied linguistic research: Language researcher narratives. New York, NY: Routledge. 181-194. https://doi.org/10.4324/9781315816937-11

Garreau J. 2006. Radical evolution: The promise and peril of enhancing our minds, our bodies – and what it means to be human. USA: Random House Digital, Inc.

Gates A & Dai D. 2016. Programming Pig: Dataflow scripting with Hadoop. USA: O’Reilly Media, Inc.

Gatto M. 2015. Making research useful: Current challenges and good practices in data visualisation. Reuters Institute for the Study of Journalism (with the support of the University of Oxford’s ESRC Impact Acceleration Account in partnership with Nesta and the Alliance for Useful Evidence). Available: https://www.alliance4usefulevidence.org/assets/Making-Research-Useful-Current-Challenges-and-Good-Practices-in-Data-Visualisation.pdf (Accessed 1 October 2018).

Geertz C. 1973. The interpretation of cultures; selected essays. New York, NY: Basic Books.

Gemayel N. 2016. Analyzing Google file system and Hadoop distributed file system. Research Journal of Information Technology, 8(3):66-74. https://doi.org/10.3923/rjit.2016.66.74

Ghemawat S, Gobioff H & Leung S. 2003. The Google File System. ACM Sigops Operating Systems Review, 37(5):29-43. https://doi.org/10.1145/1165389.945450

Giannakos MN, Chorianopoulos K & Chrisochoides N. 2015. Making sense of video analytics: Lessons learned from clickstream interactions, attitudes, and learning outcome in a video-assisted course. The International Review of Research in Open and Distributed Learning, 16(1). Available: http://www.irrodl.org/index.php/irrodl/article/view/1976/3198 (Accessed 18 May 2018). https://doi.org/10.1109/FIE.2014.7044485

Giest S. 2017. Big data analytics for mitigating carbon emissions in smart cities: Opportunities and challenges. European Planning Studies, 25(6):941-57. https://doi.org/10.1080/09654313.2017.1294149

Gilbert LS. 2002. Going the distance: ‘Closeness’ in qualitative data analysis software. International Journal of Social Research Methodology, 5(3):215-228. https://doi.org/10.1080/13645570210146276

Glass GV. 1976. Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10):3-8. https://doi.org/10.2307/1174772

Gleser GC, Gottschalk LA & Springer KJ. 1961. An anxiety scale applicable to verbal samples. Archives of General Psychiatry, 5(6):593-605. https://doi.org/10.1001/archpsyc.1961.01710180077009

Georgiou M. 2006. Architectural privacy: A topological approach to relational design problems. Unpublished Master’s dissertation. London, UK: University College London.

Godzinski Jr, R. 2005. (En)Framing Heidegger’s philosophy of technology. Essays in Philosophy, 6(1):1-9.

Goldenberg T, Darbes LA & Stephenson R. 2017. Inter-partner and temporal variations in the perception of sexual risk for HIV. AIDS and Behavior: 1-15. Available:https://link.springer.com/content/pdf/10.1007%2Fs10461-017-1876-5.pdf (Accessed 4 April 2018). https://doi.org/10.1007/s10461-017-1876-5

Goldstuck A. 2010. Internet access in South Africa 2010. World Wide Worx, July 2010. Available: http://www.worldwideworx.com/wp-content/uploads/2010/07/Exec-Summary-Internet-Access-in-SA-2010.doc (Accessed 13 December 2017).

González-Bailón S. 2013. Social science in the era of big data. Policy & Internet, 5(2):147-160. https://doi.org/10.1002/1944-2866.POI328

Gorton I. 2014. Software architecture: Trends and new directions. Software Engineering Institute/Carnegie Mellon University. Available: https://pdfs.semanticscholar.org/presentation/b02b/06bb5da8b89dd365a1e0174c03f07135f664.pdf (Accessed 21 May 2018).

Gous N. 2018. AfriForum in Australia to talk about farm attacks and murders in SA. Timeslive, 14 October. Available: https://www.timeslive.co.za/news/south-africa/2018-10-14-afriforum-in-australia-to-talk-about-farm-attacks-and-murders-in-sa/ (Accessed 8 January 2019).

Govani T & Pashley H. 2005. Student awareness of the privacy implications when using Facebook. Unpublished paper presented at the “Privacy Poster Fair” at the Carnegie Mellon University School of Library and Information Science, 9:1-17. Available: http://lorrie.cranor.org/courses/fa05/tubzhlp.pdf (Accessed 1 October 2018).

Graham E. 2017. Introduction: Data visualisation and the humanities. English Studies, 98(5):488-458. https://doi.org/10.1080/0013838X.2017.1332021

Graham S, Milligan I & Weingart S. 2015. Exploring big historical data: The historian’s macroscope. London, UK: Imperial College Press. https://doi.org/10.1142/p981

Grant R. 2017. Statistical literacy in the data science workplace. Statistics Education Research Journal, 17(1):17-21.

Granville V. 2014. Developing analytic talent: Becoming a data scientist. Indianapolis, IN: John Wiley & Sons.

Graunt J. 1662. Natural and political observations, mentioned in a following index, and made upon the bills of mortality. Edited with an introduction by WF Willcox. Baltimore: Johns Hopkins Press, 1939.

Gray E, Jennings W, Farrall S & Hay C. 2015. Small big data: Using multiple datasets to explore unfolding social and economic change. Big Data & Society, 2(1):1-6. https://doi.org/10.1177/2053951715589418

Gray J. 2007. Jim Gray on eScience: A transformed scientific method. Available: http://microsoft.com/en-us/um/people/gray/talks/NRC-CSTB_eScience.ppt (Accessed 15 May 2018).

Gregory I, Cooper D, Hardie A & Rayson P. 2015. Spatializing and analysing digital texts: Corpora, GIS and places. In: D Bodenhamer, J Corrigan & T Harris (eds). Deep maps and spatial narratives. Bloomington, IN: Indiana University Press. 150-178. https://doi.org/10.2307/j.ctt1zxxzr2.11

Greller W & Drachsler H. 2012. Translating learning into numbers: A generic framework for learning analytics. Educational Technology & Society, 15(3):42-57.

Grill-Spector K & Kanwisher N. 2005. Visual recognition: As soon as you know it is there, you know what it is. Psychological Science, 16(2):152-160. https://doi.org/10.1111/j.0956-7976.2005.00796.x

Grimmer J. 2015. We are all social scientists now: How big data, machine learning, and causal inference work together. PS: Political Science & Politics, 48(1):80-83. https://doi.org/10.1017/S1049096514001784

Grobler R. 2018. No compensation for guessing what SA’s ‘word’ of the year is. News24, 16 October. Available: https://www.news24.com/SouthAfrica/News/no-compensation-for-guessing-what-sas-word-of-the-year-is-20181016 (Accessed 8 January 2019).

Groenfeldt T. 2012. IBM and Ohio State University get analytical. Forbes, 29 November. Available: https://www.forbes.com/sites/tomgroenfeldt/2012/11/29/ibm-and-ohio-state-university-get-analytical/#7c1d815f7fbb (Accessed 13 December 2017).

Grosser B. 2014. What do metrics want? How quantification prescribes social interaction on Facebook. Computational Culture, 4. Available: http://computationalculture.net/article/what-do-metrics-want (Accessed 15 March, 2018). https://dx.doi.org/10.1007/s13398-014-0173-7.2

Grusin R. 2014. The dark side of digital humanities: Dispatches from two recent MLA conventions. differences, 25(1):79-92. https://doi.org/10.1215/10407391-2420009

Guberman S. 2015. On Gestalt theory principles. Gestalt Theory, 37(1):25-44.

Guetterman T, Creswell JW & Kuckartz U. 2015. Using joint displays and MAXQDA software to represent the results of mixed methods research. In: MT McCrudden, G Schraw & C Buckendahl (eds). Use of visual displays in research and testing: Coding, interpreting, and reporting data. Charlotte: Information Age Publishing. 145-176.

Gunarathne, T, Wu TL, Qiu J & Fox G. 2010. Cloud computing paradigms for pleasingly parallel biomedical applications. In: P Dinda (ed). Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. New York, NY: ACM:460-469. https://doi.org/10.1145/1851476.1851544

Gunaratne SA. 2001. Paper, printing and the printing press: A horizontally integrative macrohistory analysis. Gazette (Leiden, Netherlands), 63(6):459-479. https://doi.org/10.1177/0016549201063006001

Gutierrez M & Milan S. 2017. Technopolitics in the age of big data. In: FS Caballero & T Gravante (eds). Networks, movements & technopolitics in Latin America: Critical analysis and current challenges. USA: Palgrave Macmillan. 95-109. https://doi.org/10.1007/978-3-319-65560-4_5

Hacking I. 1991. How should we do the history of statistics?. In: G Burchill, C Gordon & P Miller (eds). The Foucault effect. Chicago: The Chicago University Press. 181-195.

Halevi G & Moed H. 2012. The evolution of big data as a research and scientific topic: overview of the literature. Research Trends, 30(1): 3-6.

Hall C. 2016. Writing history, making ‘race’: Slave-owners and their stories. Australian Historical Studies, 47(3):365-380. https://doi.org/10.1080/1031461X.2016.1202291

Hammond A, Brooke J & Hirst G. 2016. Modeling modernist dialogism: Close reading with big data. In: S Ross & J O’Sullivan (eds). Reading modernism with machines. London, UK: Palgrave Macmillan. 49-77. https://doi.org/10.1057/978-1-137-59569-0_3

Handelman LD & Lester D. 2007. The content of suicide notes from attempters and completers. Crisis, 28(2):102-104. https://doi.org/10.1027/0227-5910.28.2.102

Harford T. 2014. Big data: Are we making a big mistake?. FT Magazine, 28 March. Available: https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1740-9713.2014.00778.x (Accessed 25 May 2018).

Harkness T. 2016. Big data: Does size matter?. USA: Bloomsbury Publishing.

Harris J & Eitel-Porter R. 2012. Data scientists: As rare as unicorns. The Guardian, 12 February. Available: http://www.theguardian.com/media-network/2015/feb/12/data-scientists-as-rare-as-unicorns (Accessed 9 September 2018).

Harris J, Shetterley N, Alter AE & Schnell K. 2013. The team solution to the data scientist shortage. Accenture. Available: https://www.accenture.com/t20150923T082247Z__w__/ie-en/_acnmedia/Accenture/Conversion- Assets/DotCom/Documents/Global/PDF/Indurties_17/Accenture-Team-Solution-Data-Scientist-Shortage.pdfla=en (Accessed 9 September 2018).

Harrison SE & Johnson PA. 2016. Crowdsourcing the disaster management cycle. International Journal of Information Systems for Crisis Response and Management (IJISCRAM), 8(4):17-40. https://doi.org/10.4018/IJISCRAM.2016100102

Haseeb A & Pattun G. 2017. A review on NoSQL: Applications and challenges. International Journal of Advanced Research in Computer Science, 8(1):203-207. https://dx.doi.org/10.26483/ijarcs.v8i1.2885

Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A & Khan SU. 2015. The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47:98-115. https://doi.org/10.1016/j.is.2014.07.006

Hauge MV, Stevenson MD, Rossmo DK & Le Comber SS. 2016. Tagging Banksy: Using geographic profiling to investigate a modern art mystery. Journal of Spatial Science, 61(6):185-190. https://doi.org/10.1080/14498596.2016.1138246

Head, T. 2018. Farm murders: Six surprising facts we learned from crime stats 2017/2018. The South African, 11 October. Available: https://www.thesouthafrican.com/farm-murders-crime-stats-2017-2018/ (Accessed: 5 February 2019).

He W, Zha S & Li L. 2013. Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3):464-472. https://doi.org/10.1016/j.ijinfomgt.2013.01.001

He X, Liu P, Zhang W & He K. 2016. Study on the mobile cloud framework for sociology: An empirical implementation. Paper presented at Cloud Computing and Big Data Analysis (ICCCBDA), 2016 IEEE International Conference on Cloud Computing and Big Data Analysis. 5-7 July 2016. Chengdu, China: IEEE. 9-14. https://doi.org/10.1109/ICCCBDA.2016.7529526

Heidegger M. 1966. Memorial address. Translated by JM Anderson & EH Freund. Discourse on thinking. New York, NY: Harper and Row. 43-57.

Heidegger M. 1977. Science and reflection. Translated by W Lovitt. The question concerning technology, and other essays. New York, NY: Harper Collins. 155-182.

Helbing D. 2015. Societal, economic, ethical and legal challenges of the digital revolution: From big data to deep learning, artificial intelligence, and manipulative technologies. Available: https://arxiv.org/ftp/arxiv/papers/1504/1504.03751.pdf (Accessed 17 March 2018). https://doi.org/10.2139/ssrn.2594352

Hellerstein JM. 2008. Quantitative data cleaning for large databases. White Paper, United Nations Economic Commission for Europe (UNECE). Available: http://db.cs.berkeley.edu/jmh/papers/cleaning-unece.pdf (Accessed 1 October 2018).

Henderson S & Segal EH. 2013. Visualizing qualitative data in evaluation research. New Directions for Evaluation, 2013(139):53-71. https://doi.org/10.1002/ev.20067

Heuser R & Le-Khac L. 2011. Learning to read data: Bringing out the humanistic in the digital humanities. Victorian Studies, 54(1):79-86. https://doi.org/10.2979/victorianstudies.54.1.79

Hindman M. 2015. Building better models: Prediction, replication, and machine learning in the social sciences. The ANNALS of the American Academy of Political and Social Science, 659(1): 48-62. https://doi.org/10.1177/0002716215570279

Hirsch DD. 2014. That’s unfair! Or is it? Big data, discrimination and the FTC’s unfairness authority. Kentucky Law Journal, 103: 345-361.

Hitchcock T. 2014. Big data, small data and meaning. Historyonics, 9 November. Available: http://historyonics. blogspot.sg./2014/11/big-data-small-data-and-meaning_9.html (Accessed 13 April 2018).

Hitzler P & Janowicz K. 2013. Linked data, big data, and the 4th paradigm. Semantic Web, 4(3):233-235. https://dx.doi.org/10.3233/SW-130117

Hocevar KP, Flanagin AJ & Metzger MJ. 2014. Social media self-efficacy and information evaluation online. Computers in Human Behavior, 39:254-262. https://doi.org/10.1016/j.chb.2014.07.020

Hofmann B. 2006. When means become ends: Technology producing values. Seminar. Net, 2(2):1-12.

Holmes DE. 2017. Big data: A very short introduction. New York, NY: Oxford University Press. https://doi.org/10.1093/actrade/9780198779575.001.0001

Holtz D. 2014. 8 skills you need to be a data scientist. Udacity, 7 November. Available: https://blog.udacity.com/2014/11/data-science-job-skills.html (Accessed 7 October 2015).

Hornof AJ. 2004. Cognitive strategies for the visual search of hierarchical computer displays. Human-Computer Interaction, 19(3):183-223. https://doi.org/10.1207/s15327051hci1903_1

Horwitz RB & Currie W. 2007. Another instance where privatization trumped liberalization: The politics of telecommunications reform in South Africa – A ten-year retrospective. Telecommunications Policy, 31(8):445-462. https://doi.org/10.1016/j.telpol.2007.05.008

Housley W, Dicks B, Henwood K & Smith R. Qualitative methods and data in digital societies. Qualitative Research, 17(6):607-609. https://doi.org/10.1177/1468794117730936

Howard JH, Kazar ML, Menees SG, Nichols DA, Satyanarayanan M, Sidebotham RN & West MJ. 1988. Scale and performance in a distributed file system. ACM Transactions on Computer Systems, 6(1):51-81. https://doi.org/10.1145/37499.37500

Hoyt E. 2014. Lenses for Lantern: Data mining, visualization, and excavating film history’s neglected sources. Film History: An International Journal, 26(2):146-168. https://doi.org/10.2979/filmhistory.26.2.146

Hu H, Wen Y, Chua TS & Li X. 2014. Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2:652-687. https://doi.org/10.1109/ACCESS.2014.2332453

Hudson, JM & Bruckman A. 2004. ‘Go away’: Participant objections to being studied and the ethics of chat room research. The Information Society, 20:127-139. https://doi.org/10.1080/01972240490423030

Ibarra F. 2012. 4 architecture considerations for big data analytics. VFabric, 28 August. Available: https://blogs.vmware.com/vfabric/2012/08/4-key-architecture-considerations-for-big-data-analytics.html (Accessed 12 May 2018).

Idhe D. 2010. A phenomenology of technics. In: C Hanks (ed). Technology and values: Essential readings. Singapore: John Wiley & Sons. 134-156.

Igarashi Y, Altman T, Funada M & Kamiyama B. 2014. Computing: A historical and technical perspective. USA: CRC Press. https://doi.org/10.1201/b17011

Iliadis A & Russo F. 2016. Critical data studies: An introduction. Big Data & Society, 3(2):1-7. https://doi.org/10.1177/2053951716674238

Imran M, Elbassuoni S, Castillo C, Diaz F & Meier P. 2013. Extracting information nuggets from disaster-related messages in social media. In: T Comes, F. Fiedrich, S. Fortier, J Geldermann & Y Yang (eds). Proceedings of the 10th International ISCRAM Conference. Baden-Baden, Germany: ISCRAM Association:1-10.

Inmon WH. 2005. Building the data warehouse: Getting started. Indianapolis, IN: John Wiley & Sons.

Innes M, Roberts C, Preece A & Rogers D. 2016. Ten “Rs” of social reaction: Using social media to analyse the “post-event” impacts of the murder of Lee Rigby. Terrorism and Political Violence: 1-21. Available: https://www.tandfonline.com/doi/full/10.1080/09546553.2016.1180289 (Accessed 25 April 2018). https://doi.org/10.1080/09546553.2016.1180289

Ioannidis JP. 2013. Informed consent, big data, and the oxymoron of research that is not research. The American Journal of Bioethics, 13(4):40-42. https://doi.org/10.1080/15265161.2013.768864

Izquierdo JLC & Cabot J. 2016. JSONDiscoverer: Visualizing the schema lurking behind JSON documents. Knowledge-Based Systems, 103:52-55. https://doi.org/10.1016/j.knosys.2016.03.020

Jacobs A. 2009. The pathologies of big data. Communications of the ACM, 52(8):36–44. https://doi.org/10.1145/1536616.1536632

Jagadish HV. 2015. Big data and science: Myths and reality. Big Data Research, 2(2):49-52. https://doi.org/10.1016/j.bdr.2015.01.005

Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R & Shahabi C. 2014. Big data and its technical challenges. Communications of the ACM, 57(7):86-94. https://doi.org/10.1145/2611567

Jahns V. 2014. Information visualization: perception for design by Colin Ware. ACM SIGSOFT Software Engineering Notes, 39(2):43-44. https://doi.org/10.1145/2579281.2579288

Jang SH & Callingham R. 2012. Conducting research in social media research: Ethical challenges. In: SI Fan, T Lê, Q Lê & Y Yue (eds). Conference Proceedings: Innovative Research in a Changing and Challenging World. Launceston: Australian Multicultural Interaction Institute:70-80.

Jänicke S, Franzini G, Cheema MF & Scheuermann G. 2015. On close and distant reading in digital humanities: A survey and future challenges. Paper presented at the Eurographics Conference on Visualization (EuroVis)-STARs. 25-29 May 2015. Cagliari, Italy: The Eurographics Association. https://dx.doi.org/10.2312/eurovisstar.20151113

Jiang H, Lin P & Qiang M. 2015. Public-opinion sentiment analysis for large hydro projects. Journal of Construction Engineering and Management, 142(2):1–12. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001039

Jianqiang Z & Xiaolin G. 2017. Comparison research on text pre-processing methods on twitter sentiment analysis. IEEE Access, 5:2870-2879. https://doi.org/10.1109/ACCESS.2017.2672677

Jin X, Wah BW, Cheng X & Wang Y. 2015. Significance and challenges of big data research. Big Data Research, 2: 59–64. https://doi.org/10.1016/j.bdr.2015.01.006

Jockers ML. 2013. Macroanalysis: Digital methods and literary history. USA: University of Illinois Press. https://doi.org/10.16995/dscn.62

Johnson-Laird PN. 2010. Mental models and human reasoning. PNAS, 107(43):18243-18250. https://doi.org/10.1073/pnas.1012933107

Johnson-Laird PN & Byrne RM. 2002. Conditionals: a theory of meaning, pragmatics, and inference. Psychological Review, 109(4):646-678. https://doi.org/10.1037//0033-295X.109.4.646

Johnson-Laird PN, Khemlani SS & Goodwin GP. 2015. Logic, probability, and human reasoning. Trends in Cognitive Sciences, 19(4):201-214. https://doi.org/10.1016/j.tics.2015.02.006

Jones NJ & Bennell C. 2007. The development and validation of statistical prediction rules for discriminating between genuine and simulated suicide notes. Archives of Suicide Research, 11(2):219-233. https://doi.org/10.1080/13811110701250176

Jordaan AJJ & Van der Merwe A. 2015. Best practices for learning analytics initiatives in higher education. Universities South Africa. In:WR Kilfoil (ed). Moving beyond the hype: A contextualised view of learning with technology in higher education. Pretoria, South Africa: Universities South Africa. 53-58.

Jordan G. 2014. Practical Neo4j. Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-0022-3

Jukić N, Sharma A, Nestorov S & Jukić B. 2015. Augmenting data warehouses with big data. Information Systems Management, 32(3):200-209. https://doi.org/10.1080/10580530.2015.1044338

Jurafsky D & Martin JH. 2009. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, NJ: Prentice-Hall. https://doi.org/10.1162/089120100750105975

Just MA, Pan L, Cherkassky VL, McMakin DL, Cha C, Nock MK & Brent D. 2017. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth. Nature Human Behaviour, 1(12):911-919. https://doi.org/10.1038/s41562-017-0234-y

Kaefer F, Roper J & Sinha P. 2015. A software-assisted qualitative content analysis of news articles: Example and reflections. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 16(2):1-20. Available: http://www.qualitative-research.net/index.php/fqs/article/view/2123/3815 (Accessed 4 April 2018). http://dx.doi.org/10.17169/fqs-16.2.2123

Kahneman D. 2011. Thinking, fast and slow. New York. NY: Farrar, Straus & Giroux. https://doi.org/10.1086/674372

Kamper H. 2017. Digital humanitarianism: Using big data. The Borgen Project, 24 February Available: https://borgenproject.org/digital-humanitarianism/ (Accessed 29 May 2018).

Kaplan F. 2012. How books will become machines. In: CM Jérome, V François & V Joseph (eds). Lire demain. Des manuscrits antiques à l’ère digitale. Lausanne, Switzerland: PPUR. 25-41. https://doi.org/10.3389/fdigh.2015.00001

Kaplan, F. 2015. A map for big data research in digital humanities. Frontiers in Digital Humanities, 2. Available: https://www.frontiersin.org/articles/10.3389/fdigh.2015.00001/full (Accessed 12 December 2017). https://doi.org/10.3389/fdigh.2017.00012

Kaplan F & di Lenardo I. 2017. Big data of the past. Frontiers in Digital Humanities, 4(12):1-12. https://doi.org/10.1111/cts.12178

Kaplan RM, Chambers DA & Glasgow RE. 2014. Big data and large sample size: A cautionary note on the potential for bias. Clinical and Translational Science, 7(4):342-346. https://dx.doi.org/10.1111/cts.12178

Karamshuk D, Shaw F, Brownlie J & Sastry N. 2017. Bridging big data and qualitative methods in the social sciences: A case study of Twitter responses to high profile deaths by suicide. Online Social Networks and Media, 1:33-43. https://doi.org/10.1016/j.osnem.2017.01.002

Karpurapu BSH & Jololian L. 2017. A framework for social network sentiment analysis using big data analytics. In: SC Suh & T Anthony (eds). Big data and visual analytics. Cham, Switzerland: Springer. 203-218. https://doi.org/10.1007/978-3-319-63917-8_12

Katal A, Wazid M & Goudar RH. 2013. Big data: Issues, challenges, tools and good practices. Paper presented at the 2013 Sixth international conference on contemporary computing. 8-10 August 2013. Noida, India: IEEE. 404-409. https://doi.org/10.1109/IC3.2013.6612229

Kaufer E. 2016. Qualitative research in the age of big data. Electronic Ink, 22 June. Available: http://electronicink.com/qualitative-research-in-the-age-of-big-data/ (Accessed 5 October 2017).

Kaufman LM. 2009. Data security in the world of cloud computing. IEEE Security & Privacy, 7(4):61-64. https://doi.org/10.1109/MSP.2009.87

Keim D, Qu H, & Ma KL. 2013. Big-data visualization. IEEE Computer Graphics and Applications, 33(4):20-21. https://doi.org/10.1109/MCG.2013.54

Kelleher JD & Tierney B. 2018. Data science. Cambridge, MA: The MIT Press. https://doi.org/10.7551/mitpress/11140.001.0001

Kellen V, Recktenwald A & Burr S. 2013. Applying Big Data in higher education: A case study. Arlington, MA: Cutter Consortium, 13(8):1-39.

Kennedy H & Hill RL. 2017a. The pleasure and pain of visualizing data in times of data power. Television & New Media, 18(8):769-782. https://doi.org/10.1177/1527476416667823

Kennedy H & Hill RL. 2017b. The feeling of numbers: Emotions in everyday engagements with data and their visualisation. Sociology. Available: http://eprints.whiterose.ac.uk/105061/11/Kennedy%20-%20The%20Feeling%20of%20Numbers%20-%20AFC%202016-09-14.pdf (Accessed 15 March 2018). https://doi.org/10.1177/0038038516674675

Kennedy H, Hill RL, Aiello G & Allen W. 2016. The work that visualisation conventions do. Information, Communication & Society, 19(6):715-735. https://doi.org/10.1080/1369118X.2016.1153126

Kennedy H, Moss G, Birchall C & Moshonas S. 2015. Balancing the potential and problems of digital methods through action research: Methodological reflections. Information, Communication & Society, 18(2):172–186. https://doi.org/10.1080/1369118X.2014.946434

Kesari G. 2018. What’s the secret source to transforming into a unicorn in data science?. Towards Data Science, 7 June. Available: https://towardsdatascience.com/whats-the-secret-sauce-to-transforming-into-a-unicorn-in-data-science-94082b01c39d (Accessed 9 September 2018).

Khalifa M, Jennings M, Briscoe F, Oleszweski A & Abdi N. 2014. Racism? Administrative and community perspectives in data-driven decision making. Urban Education, 49(2):147-181. https://doi.org/10.1177/0042085913475635

Killalea D. 2018. South Africa: Peter Dutton’s ‘white farmer’ comments anger Pretoria. News.com.au, 16 March. Available: https://www.news.com.au/finance/economy/world-economy/south-africa-peter-duttons-white-farmer-comments-anger-pretoria/news-story/a6a48505f72dabf517e961efa58242be (Accessed 8 January 2019).

Kim B, Trimi S & Chung J. 2014. Big-data applications in the government sector. Communications of the ACM, 57(3):78-85. https://doi.org/10.1145/2500873

Kim EHJ, Jeong YK, Kim Y, Kang KY & Song M. 2016. Topic-based content and sentiment analysis of Ebola virus on Twitter and in the news. Journal of Information Science, 42(6):763-781. https://doi.org/10.1177/0165551515608733

Kim SM & Hovy E. 2004. Determining the sentiment of opinions. In: E Yuste, SJ Jekat, AK Pantli & G Massey (eds). In Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics:1367. https://doi.org/10.3115/1220355.1220555

Kim W, Jeong OR & Kim C. 2014. A holistic view of big data. International Journal of Data Warehousing and Mining, 10(3):59-69. https://doi.org/10.4018/ijdwm.2014070104

Kimball R & Caserta J. 2004. The data warehouse ETL toolkit: Practical techniques for extracting, cleaning, conforming, and delivering data. New York, NY: John Wiley & Sons.

Kirk A. 2016. Data visualisation: A handbook for data driven design. London, UK: Sage Publications. https://doi.org/10.1177/2399808317715320

Kirkegaard EOW & Bjerrekær JD. 2016. The OKCupid dataset: A very large public dataset of dating site users. Open Differential Psychology, 46:1-10. https://doi.org/10.26775/ODP.2016.11.03

Kitchin R. 2014a. The data revolution: Big data, open data, data infrastructures and their consequences. Thousand Oaks, California: Sage Publications. https://doi.org/10.1111/jors.12293

Kitchin R. 2014b. Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1):1-12. https://doi.org/10.1177/2053951714528481

Kitchin R & Lauriault TP. 2014. Towards critical data studies: Charting and unpacking data assemblages and their work. The Programmable City Working Paper 2. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2474112 (Accessed 13 September 2018).

Kitchin R & Lauriault TP. 2015. Small data in the era of big data. GeoJournal, 80(4):463-475. https://doi.org/10.1007/s10708-014-9601-7

Knox D. 2010. Spies in the house of learning: A typology of surveillance in online learning environments. Paper presented at the EDGE 2010 – e-Learning: the horizon and beyond conference. 12-15 October 2010. St. John’s, Newfoundland and Labrador, Canada.

Kobourov SG, Mchedlidze T & Vonessen L. 2015. Gestalt principles in graph drawing. International Symposium on Graph Drawing and Network Visualization. 24-26 September 2015. Los Angeles, CA: Springer. 558-560. https://doi.org/10.1007/978-3-319-27261-0_50

Kosala R & Blockeel H. 2000. Web mining research. ACM SIGKDD Explorations Newsletter, 2(1):1-15. https://doi.org/10.1145/360402.360406

Kosslyn SM. 2006. Graphic design for the eye and the mind. New York, NY: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195311846.001.0001

Kotz S. 2005. Reflections on early history of official statistics and a modest proposal for global coordination. Journal of Official Statistics, 21(2):139-144.

Kramer AD, Guillory JE & Hancock JT. 2014. Experimental evidence of massive-scale emotional contagion through social networks. PNAS, 111(24):8788-8790. https://doi.org/10.1073/pnas.1320040111

Kriel K. 2018. No Mr Ramaphosa, we’re in the US fighting for SA – AfriForum. Politicsweb, 8 May. Available: https://www.politicsweb.co.za/news-and-analysis/no-mr-ramaphosa-were-in-the-us-fighting-for-sa--af (Accessed 8 Januarie 2019).

Krishnan K. 2013. Data warehousing in the age of big data. Amsterdam: Elsevier, Morgan Kaufmann. https://doi.org/10.1016/C2012-0-02737-8

Kruger C. 2016. (Dis)empowered whiteness: Un-whitely spaces and the production of the good white home. Anthropology Southern Africa, 39(1):46-57. https://doi.org/10.1080/23323256.2016.1157026

Krum R. 2013. Cool infographics: Effective communication with data visualization and design. Indianapolis, IN: John Wiley & Sons.

Küçükkeçeci C & Yazici A. 2018. Big data model simulation on a graph database for surveillance in wireless multimedia sensor networks. Big Data Research, 11:33-43. https://doi.org/10.1016/j.bdr.2017.09.003

Kuhn T. 1996. The structure of scientific revolutions. Chicago, IL: University of Chicago Press. https://doi.org/10.7208/chicago/9780226458106.001.0001

Kumar KK & Geethakumari G. 2014. Detecting misinformation in online social networks using cognitive psychology. Human-centric Computing and Information Sciences, 4(1):1-22. https://doi.org/10.1186/s13673-014-0014-x

Labrinidis A & Jagadish HV. 2012. Challenges and opportunities with big data. In: A Saçan & N Tatbul (ed). Proceedings of the VLDB Endowment, 5(12): 2032-2033. https://doi.org/10.14778/2367502.2367572

Lake P & Drake R. Information systems management in the big data era. USA: Springer. https://doi.org/10.1007/978-3-319-13503-8

Lakoff G & Johnson M. 1980. Metaphors we live by. Chicago, IL: University of Chicago Press.

Laksham A & Malik P. 2010. Cassandra: A decentralized structure storage system. ACM SIGOPS Operating Systems Review: 1-6. Available: http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2014_2015/papers/lakshman_ladis_2009.pdf (Accessed 28 May 2018). http://dx.doi.org/10.1145/1773912.1773922

https://doi.org/10.1145/1773912.1773922

Lam D. 2018. Big data challenges in social sciences & humanities research. Datanami, 8 September. Available: https://www.datanami.com/2014/09/08/big-data-challenges-social-sciences-humanities-research/ (Accessed 10 September 2018).

Land R & Bayne SS. 2005. Screen or monitor: Issues of surveillance and disciplinary power in online learning environments. In: R Land & S Bayne (eds). Education in cyberspace. London, UK: Routledge. 165-178.

Laney D. 2001. 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6. Available: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf (Accessed 8 December 2017).

Landset S, Khoshgoftaar TM, Richter AN & Hasanin T. 2015. A survey of open source tools for machine learning with big data in the Hadoop ecosystem. Journal of Big Data, 2(1):2-36. https://doi.org/10.1186/s40537-015-0032-1

Latzko-Toth G, Bonneau C & Millette M. 2017. Small data, thick data: Thickening strategies for trace-based social media research. In: L Sloan & A Quan-Haase (eds). The SAGE PUBLICATIONS handbook of social media research methods. New York NY: Sage Publications. 199-214. https://doi.org/10.4135/9781473983847.n13

Lazar D, Kennedy R, King G & Vespignani A. 2014. The parable of Google Flu: Traps in big data analysis. Science, 343(6176):1203-1205. https://doi.org/10.1126/science.1248506

Lee HS, Lee HR, Park JU & Han YS. 2018. An abusive text detection system based on enhanced abusive and non-abusive word lists. Decision Support Systems, 113:22-31. https://doi.org/10.1016/j.dss.2018.06.009

Lee KH, Lee YJ, Choi H, Chung YD & Moon B. 2011. Parallel data processing with MapReduce: A survey. ACM SIGMOD Record, 40(4):11-20. https://doi.org/10.1145/2094114.2094118

Leggett W. 2014. The politics of behaviour change: Nudge, neoliberalism and the state. Policy & Politics, 42(1):3-19. https://doi.org/10.1332/030557312X655576

Le Grange L. 2016. Decolonising the university curriculum: Leading article. South African Journal of Higher Education, 30(2):1-12. https://doi.org/10.20853/30-2-709

LeGreco M & Tracy SJ. 2009. Discourse tracing as qualitative practice. Qualitative Inquiry, 15(9):1516–1543. https://doi.org/10.1177/1077800409343064

Lehrer J. 2010. A physicist solves the city. New York Times, 17 December. Available: http://www.nytimes.com/2010/12/19/magazine/19Urban_West-t.html (Accessed 9 December 2017).

Leiner B, Cole R, Postel J & Mills D. 1985. The DARPA internet protocol suite. IEEE Communications Magazine, 23(3):29-34. https://doi.org/10.1109/MCOM.1985.1092530

Leinweber D. 2007. Stupid data miner tricks: Overfitting the S&P 500. The Journal of Investing, 16(1):15-22. https://doi.org/10.3905/joi.2007.681820

Lemire S & Petersson GJ. (In press). Big bang or big bust? The role and implications of big data in evaluation. In: GJ Petersson & JD Breul (eds). Cyber society, big data, and evaluation: Comparative policy evaluation. New Jersey, New Brunswick: Transaction Publishers.

Lemke M. 2014. Frequenzanalyse und Diktionäransatz. eTMV, 1(5). Available: http://www.epol-projekt.de/wp-content/uploads/2014/10/eTMV_1.pdf (Accessed 10 April 2018). https://doi.org/10.1007/s13222-014-0174-x

Lemke M, Niekler A, Schaal GS & Wiedemann G. 2015. Content analysis between quality and quantity. Datenbank-Spektrum, 15(1):7-14. https://dx.doi.org/10.1007/s13222-014-0174-x

Lemmens JC & Henn M. 2016. Learning analytics: A South African higher education perspective. In: J Botha & NJ Muller (eds). Institutional Research in South African higher education. Intersecting contexts and practices. Stellenbosch, South Africa: AFRICAN SUN MeDIA. 231-253. https://doi.org/10.18820/9781928357186/12

Levaux C. 2017. The forgotten history of repetitive audio technologies. Organised Sound, 22(2):187-194. https://doi.org/10.1017/S1355771817000097

Levi AS. 2013. Humanities ‘big data’: Myths, challenges, and lessons. In: X Hu, TY Lin, V Raghaven, B Wah, R Baeza-Yates, G Fox, C Shahabi, M Smith, Q Yang, R Lempel & R Nambiar (eds). Big Data, 2013 IEEE International Conference Proceedings. Sana Clara, CA: IEEE:33-36. https://doi.org/10.1109/BigData.2013.6691667

Levin N. 2018. Big Data and biomedicine. In: M Meloni, J Cromby, D Fitzgerald & S Lloyd (eds). The Palgrave handbook of biology and society. London, UK: Palgrave Macmillan. 663-681. https://doi.org/10.1057/978-1-137-52879-7_28

Lewis K. 2015. Three fallacies of digital footprints. Big Data & Society, 2(2): 1-4. https://doi.org/10.1177/2053951715602496

Lewis K, Kaufman J, Gonzalez M, Wimmer A & Christakis N. 2008. Tastes, ties, and time: A new social network dataset using Facebook. Social networks, 30(4):330-342. https://doi.org/10.1016/j.socnet.2008.07.002

Li D, Cao J & Yao Y. 2015. Big data in smart cities. Science China Information Sciences, 58(10):1-12. https://doi.org/10.1007/s11432-015-5396-5

Li D & Wang X. 2017. Dynamic supply chain decisions based on networked sensor data: An application in the chilled food retail chain. International Journal of Production Research, 55(17):5127-5141. https://doi.org/10.1080/00207543.2015.1047976

Li S, Da D Xu & Zhao S. (In press). 5G internet of things: A survey. Journal of Industrial Information Integration.

Li Y, Gai K, Qiu L, Qiu M & Zhao H. 2017. Intelligent cryptography approach for secure distributed big data storage in cloud computing. Information Sciences, 387:103-115. https://doi.org/10.1016/j.ins.2016.09.005

Lidlicker JCR. 1963. Memorandum for: Members and affiliates of the intergalactic computer network. Kurzweil Network. Available: http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network (Accessed 11 October 2018).

Life Esidimeni arbitration hearings: Qedani Mahlangu I. 2018. SABC News, 24 January. Available: https://www.youtube.com/watch?v=bsoO8pkkt6o (Accessed 2 February 2018).

Life Esidimeni arbitration hearings: Qedani Mahlangu II. 2018. SABC News, 25 January. Available: https://www.youtube.com/watch?v=InQtYsktdfg (Accessed 2 February 2018).

Lin J. 2015. On building better mousetraps and understanding the human condition: Reflections on big data in the social sciences. The ANNALS of the American Academy of Political and Social Science, 659(1):33-47. https://doi.org/10.1177/0002716215569174

Lin S, Fortuna J, Kulkarni C, Stone M & Heer J. 2013, June. Selecting semantically resonant colors for data visualization. Computer Graphics Forum, 32(3):401-410. https://doi.org/10.1111/cgf.12127

Lindsay BR. 2011. Social media and disasters: Current uses, future options, and policy considerations. CRS Report for Congress, 6 September. Available: https://ofti.org/wp-content/uploads/2012/07/42245_gri-04-11-2011.pdf (Accessed 29 May 2018).

Linzer DA. 2013. Dynamic Bayesian forecasting of presidential elections in the states. Journal of the American Statistical Association, 108(501):124-134. https://doi.org/10.1080/01621459.2012.737735

Lipinski JD. 2009. Emerging legal issues in the collection and dissemination of Internet-based research data: Part II, Tort law issues involving defamation. International Journal of Internet Research Ethics, 2(1):58-72.

Liu B. 2011. Social network analysis. In: B Liu (ed). Web data mining. Berlin, Heidelberg: Springer. 269-309. https://doi.org/10.1007/978-3-642-19460-3_7

Liu B. 2012. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1):1-167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016

Liu, B. 2015. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139084789

Liu B & Zhang L. 2012. A survey of opinion mining and sentiment analysis. In: C Aggarwal & C Zhai (eds). Mining text data. Boston, MA: Springer. 415-463. https://doi.org/10.1007/978-1-4614-3223-4_13

Liu XL, Wang, HZ, Li, JZ & Gao H. 2017. Entity Manager: Managing dirty data based on entity resolution. Journal of Computer Science and Technology, 32(3):644-662. https://doi.org/10.1007/s11390-017-1731-1

Lo SW, Wu JH, Lin FP & Hsu C.H. 2015. Cyber surveillance for flood disasters. Sensors, 15(2):2369-2387. https://doi.org/10.3390/s150202369

Lohmeier C. 2014. The researcher and the never-ending field: Reconsidering big data and digital ethnography. In: M Hand & S Hillyard (eds). Big data? Qualitative approaches to digital research: Studies in qualitative methodology. Bingly, UK: Emerald Group Publishing Limited. 75-89. https://doi.org/10.1108/S1042-319220140000013005

Lomborg S & Bechmann A. 2014. Using APIs for data collection on social media. The Information Society, 30(4):256-265. https://doi.org/10.1080/01972243.2014.915276

López-Astorga M. 2016. Some arguments that the mental logic theory needs to clarify to continue being an alternative to the mental models theory. Civilizar Ciencias Sociales y Humanas, 16(31):235-248. https://doi.org/10.22518/16578953.652

Loshin D. 2013. Big data analytics: From strategic planning to enterprise integration with tools, techniques, NoSQL, and Graph. Waltham: Elsevier, Morgan Kaufmann.

Loukissas YA. 2012. Co-designers: cultures of computer simulation in architecture. London and New York, NY: Routledge. https://doi.org/10.4324/9780203123065

Loukissas YA. 2016. A place for big data: Close and distant readings of accessions data from the Arnold Arboretum. Big Data & Society, 3(2):1-20. https://doi.org/10.1177/2053951716661365

Luhn HP. 1958. A business intelligence system. IBM Journal of Research and Development, 2(4):314-319. https://doi.org/10.1147/rd.24.0314

Lupton D. 2015. The thirteen Ps of big data. This Sociological Life. Available: https://www.researchgate.net/profile/Deborah_Lupton/publication/276207564_The_Thirteen_Ps_of_Big_Data/links/5552c2d808ae6fd2d81d5f20.pdf (Accessed 10 May 2018). https://dx.doi.org/10.13140/RG.2.1.2900.8800

Luxhoj JT. 2016. System safety modeling of alternative geofencing configurations for small use. International Journal of Aviation, Aeronautics, and Aerospace, 3(1):1-27. https://doi.org/10.15394/ijaaa.2016.1105

Lydia EL & Swarup MB. 2015. Big data analysis using Hadoop components like flume, mapreduce, pig and hive. International Journal of Science, Engineering and Computer Technology, 5(11):390-394.

Lyon D. 2014. Surveillance, Snowden, and big data: Capacities, consequences, critique. Big Data & Society, 1(2):1-13. https://doi.org/10.1177/2053951714541861

Maciejewski M. 2017. To do more, better, faster and more cheaply: Using big data in public administration. International Review of Administrative Sciences, 83(1_suppl):120-135. https://doi.org/10.1177/0020852316640058

MacLeod CM. 1991. Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2):163-203. https://doi.org/10.1037//0033-2909.109.2.163

Madge C. 2007. Developing a geographer’s agenda for online research ethics. Progress in Human Geography, 31:654-674. https://doi.org/10.1177/0309132507081496

Mahrt M & Scharkow M. 2013. The value of big data in digital media research. Journal of Broadcasting & Electronic Media, 57(1):20-33. https://doi.org/10.1080/08838151.2012.761700

Mai JE. 2016. Big data privacy: The datafication of personal information. The Information Society, 32(3):192-199. https://doi.org/10.1080/01972243.2016.1153010

Maier CT & Deluliis D. 2015. Recovering the human in the network: Exploring communicology as a research methodology in digital business discourse. In: E Darics (ed). Digital business discourse. London, UK: Palgrave Macmillan. 208-225. https://doi.org/10.1080/01972243.2016.1153010

Makgoba MW. 2017. The Life Esidimeni disaster: The Makgoba report. Available: https://www.sahrc.org.za/home/21/files/Esidimeni%20full%20report.pdf (Accessed 1 December 2017).

Manning CD & Schütze H. 1999. Foundations of statistical natural language processing. USA: MIT Press. https://doi.org/10.1017/S1351324902212851

Manovich L. 2011. What is visualisation?. Visual Studies, 26(1):36-49. https://doi.org/10.1080/1472586X.2011.548488

Manovich L. 2012. Trending: The promises and the challenges of big social data. In: MK Gold (ed). Debates in the digital humanities. Minneapolis, MN: University of Minnesota Press. 460-475. https://doi.org/10.1080/01973762.2013.761126

Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C & Byers AH. 2011. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Available: http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation (Accessed 8 December 2017).

Markham A. 2013. Undermining ‘data’: A critical examination of a core term in scientific inquiry. First Monday, 18(10):1-14. Available: http://uncommonculture.org/ojs/index.php/fm/article/view/4868/3749 (Accessed 6 December 2017). https://doi.org/10.5210/fm.v18i10.4868

Markham A & Buchanan E. 2012. Ethical decision-making and internet research: Recommendations from the aoir ethics working committee (version 2.0). Available: https://pure.au.dk/ws/files/55543125/aoirethics2.pdf (Accessed 11 December 2017). https://doi.org/10.5210/fm.v18i10.4868

Marks S. 2016. The information nexus: Global capitalism from the Renaissance to the present. London, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781316258170

Marr B. 2015a. A brief history of big data everyone should read. World Economic Forum, 25 February. Available: https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/ (Accessed 5 December 2017).

Marr B. 2015b. Big data-as-service is next big thing. Forbes, 24 April. Available: https://www.forbes.com/sites/bernardmarr/2015/04/27/big-data-as-a-service-is-next-big-thing/#77965ab633d5 (Accessed 13 December 2017).

Marsden JH, Shirai Y & Wilkinson VA. 2018. Big data analytics and corporate social responsibility (CSR): Adding quantifiable and qualifiable sustainability science to the three P’s. Studies in Informatics, Shizuoka University, 23:29-43. https://doi.org/10.1109/ProComm.2018.00019

Mashey JR. 1998. Big data and the next wave of infraS-tress. Computer Science Division Seminar. University of California, Berkeley.

Masinga L. 2018. Concourt ruling on Hoërskool Overvaal a blow to non-racialism – Lesufi. IOL, 27 July. Available: https://www.iol.co.za/news/politics/concourt-ruling-on-hoerskool-overvaal-a-blow-to-non-racialism-lesufi-16281981 (Accessed 7 March 2019).

Matsebula F & Makandla E. 2017. A big data architecture for learning analytics in higher education. In: DR Cornish (ed). IEEE africon: Science, Technology and Innovation for Africa. Cape Town, South Africa: IEEE AFRICON: 951-956. https://doi.org/10.1109/AFRCON.2017.8095610

Matusiak KK, Meng L, Barczyk E & Shih CJ. 2015. Multilingual metadata for cultural heritage materials: The case of the Tse-Tsung Chow collection of Chinese scrolls and fan paintings. The Electronic Library, 33(1):136-151. https://doi.org/10.1108/EL-08-2013-0141

Mavridis I & Karatza H. 2017. Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark. Journal of Systems and Software, 125:133-151. https://doi.org/10.1016/j.jss.2016.11.037

Maxwell-Stewart H. 2016. Big data and Australian history. Australian Historical Studies, 47(3):359-364. https://doi.org/10.1080/1031461X.2016.1208728

Mayer-Schönberger V & Cukier k. 2013. Big data: An evolution that will transform how we live, work, and think. Boston and New York, NY: Houghton Mifflin Harcourt.

Maynard, D. & M.A. Greenwood. 2014. Who cares about sarcastic tweets? Investigating the Impact of sarcasm on sentiment analysis. In:N Calzolari, K Choukri, T Declerck, H Loftsson, B Maegaard, J Mariani, A Moreno, J Odijk & S Piperidis (eds). Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14). Reykjavik, Iceland: ELRA:4238-4243.

Mayo M. 2018. Automated machine learning vs automated data science. KDdnuggets, July. Available: https://www.kdnuggets.com/2018/07/automated-machine-learning-vs-automated-data-science.html (Accessed 9 September 2018).

Mayring P. 2000. Qualitative content analysis. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 1(2):1-7. Available: https://utsc.utoronto.ca/~kmacd/IDSC10/Readings/text%20analysis/CA.pdf (Accessed 4 December 2017).

Mazzocchi F. 2015. Could big data be the end of theory in science?. EMBO Reports, 16(10):1250-1255. https://doi.org/10.15252/embr.201541001

McCarty N, Poole K & Rosenthal H. 2006. Polarized America: The dance of inequality and unequal riches. Cambridge, MA: MIT Press. https://doi.org/10.1007/s00712-007-0295-x

McFarland DA, Lewis K & Goldberg A. 2016. Sociology in the era of big data: The ascent of forensic social science. The American Sociologist, 47(1): 12-35. https://doi.org/10.1007/s12108-015-9291-8

McIntosh C. 1998. Eighteenth-century English dictionaries and the Enlightenment. The Yearbook of English Studies, 28:3-18. https://doi.org/10.2307/3508753

McKee HA & Porter JE. 2009. The ethics of internet research: A rhetorical, case-based process. New York, NY: Peter Lang. https://doi.org/10.1016/j.compcom.2010.03.003

McPherson SS. 2009. Tim Berners-Lee: Inventor of the World Wide Web. Twenty-First Minneapolis, MN: Century Books.

Meier P. 2015. Digital humanitarians: How big data is changing the face of humanitarian response. Boca Raton, FL: CRC Press. https://doi.org/10.1007/s11673-017-9807-8

Mendenhall R, Brown N, Black ML, Van Moer M, Lourentzou I, Flynn K, Mckee M & Zerai A. 2016. Rescuing lost history: Using big data to recover black women’s lived experiences. In: P Navrátil, M Dahan, D Hart, A Romanella & N Sukhija (eds). Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale. New York, NY: Article 56. https://doi.org/10.1145/2949550.2949642

Messner M, Moll J & Strömsten T. 2017. Credibility and authenticity in qualitative accounting research. In: Z Hoque, LD Parker, MA Covaleski & K Haynes (eds). The Routledge companion to qualitative accounting research methods. New York, NY: Routledge. 432-444.

Metcalf J & Crawford K. 2016. Where are human subjects in big data research? The emerging ethics divide. Big Data & Society, 3(1):1-14. https://doi.org/10.1177/2053951716650211

Milan S. 2018. Data activism as the new frontier of media activism. In: V Pickard & G Yang (eds). Media activism in the digital age. New York, NY: Routledge. 151-163. https://doi.org/10.4324/9781315393940-13

Milan S & Gutiérrez M. 2015. Citizens’ media meets big data: The emergence of data activism. Mediaciones, (14):120-133. https://doi.org/10.26620/uniminuto.mediaciones.11.14.2015.120-133

Milan S & van der Velden L. 2016. The alternative epistemologies of data activism. Digital Culture & Society, 2(2):57-74. https://doi.org/10.14361/dcs-2016-0205

Miller G. 2011. Social scientists wade into the tweet stream. Science, 333(6051):1814-1815. https://doi.org/10.1126/science.333.6051.1814

Mills CA. 2017. What are the threats and potentials of big data for qualitative research? Qualitative Research: 1-27. Available: http://journals.sagepub.com/doi/pdf/10.1177/1468794117743465 (Accessed 17 April 2018). https://doi.org/10.1177/1468794117743465

Mills RJ, Chudoba KM & Olsen DH. 2016. IS programs responding to industry demands for data scientists: A comparison between 2011-2016. Journal of Information Systems Education, 27(2): 131-141.

Milnea D, Paris C, Christensen H, Batterham P & O’Deac B. 2015. We Feel: Taking the emotional pulse of the world. In G Lindgaard & D Moore (eds). Proceedings 19th Triennial Congress of the IEA. Melbourne, Australia: IEA:9-15.

Milne JD, Jeffrey LM, Suddaby G & Higgins A. 2012. Early identification of students at risk of failing. In: M Brown, M Hartnett & T Stewart (eds). Future challenges, sustainable futures. Wellington, New Zealand: ASCILITE: 657-661.

Minelli M, Chambers M & Dhiraj A. 2013. Big data, big analytics: Emerging business intelligence and analytic trends for today’s business. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118562260

Miorandi D, Sicari S, De Pellegrini F & Chlamtac I. Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497-1516. https://doi.org/10.1016/j.adhoc.2012.02.016

Mitchley A. 2018. Hoërskool Overvaal denies allegations of racial segregation. News24, 9 January. Available: https://www.news24.com/SouthAfrica/News/hoerskool-overvaal-denies-allegations-of-racial-segregation-20180109 (Accessed 8 January 2019).

Mkokeli S. 2018. South Africa’s path to land reform is riddled with pitfalls. Bloomberg Businessweek, 23 November. Available: https://www.bloomberg.com/news/articles/2018-11-23/south-africa-s-path-to-land-reform-is-riddled-with-pitfalls (Accessed 8 January 2019).

Mohammad S, Kiritchenko S & Zhu X. 2013. NRC-Canada: Building the state-of-the-art in sentiment analysis of Tweets. Proceedings of the Seventh International Workshop on Semantic Evaluation Exercises (SemEval-2013):321–327.

Mole B. 2015. New flu tracker uses Google search data better than Google. Ars Technica. Available https://arstechnica.com/science/2015/11/new-flu-tracker-uses-google-search-data-better-than-google/ (Accessed 5 October 2017).

Monroe BL, Pan J, Roberts ME, Sen M & Sinclair B. 2015. No! Formal theory, causal inference, and big data are not contradictory trends in political science. PS: Political Science & Politics, 48(1):71-74. https://doi.org/10.1017/S1049096514001760

Morabia A. 2013. Observations made upon the bills of mortality. BMJ:346”e8640. https://doi.org/10.1136/bmj.e8640

Moravcsik A. 2014. Trust, but verify: The transparency revolution and qualitative international relations. Security Studies, 23(4):663-688. https://doi.org/10.1080/09636412.2014.970846

Moretti F. 2005. Graphs, maps, trees: Abstract models for a literary history. London, UK: Verso.

Mulder F, Ferguson J, Groenewegen P, Boersma K & Wolbers J. 2016. Questioning big data: Crowdsourcing crisis data towards an inclusive humanitarian response. Big Data & Society, 3(2):1-13. https://doi.org/10.1177/2053951716662054

Mullins R. 2017. Digital transformation: Human evolution, not technological revolution. BusinessLIVE, 8 December. Available: https://www.businesslive.co.za/redzone/news-insights/2017-12-08-digital-transformation-human-evolution-not-technological-revolution/ (Accessed 8 May 2018).

Mwangi CAG. 2017. Partner positioning: Examining international higher education partnerships through a mutuality lens. The Review of Higher Education, 41(1):33-60. https://doi.org/10.1353/rhe.2017.0032

Neff G, Tanweer A, Fiore-Gartland B & Osburn L. 2017. Critique and contribute: A practice-based framework for improving critical data studies and data science. Big data, 5(2):85-97. https://doi.org/10.1089/big.2016.0050

Nelson B. 2014. The data on diversity. Communications of the ACM, 57(11):86-95. https://doi.org/10.1145/2597886

Newton I. 1999. The Principia: The mathematical principles of natural philosophy, Book II. Berkeley, CA: University of California Press.

Neyman J & Pearson ES. 1933. On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 231(1933):289-337. https://doi.org/10.1098/rsta.1933.0009

Nguyen NP, Yan G & Thai MT. 2013. Analysis of misinformation containment in online social networks. Computer Networks, 57(10):2133-2146. https://doi.org/10.1016/j.comnet.2013.04.002

Nicholls SG, Langan SM & Benchimol EI. 2016. Reporting and transparency in big data: The nexus of ethics and methodology. In: B Mittelstadt & L Floridi (eds). The ethics of biomedical big data. Law, governance and technology series. Switzerland: Springer. 339-366. https://doi.org/10.1007/978-3-319-33525-4_15

Nickig J. 2017. Does PoPI offer adequate legislation in the digital age? Bizcommunity, 22 May. Available: https://www.bizcommunity.com/Article/196/717/162190.html (Accessed 18 November 2019).

Nightingale F. 1858. Notes on matters affecting the health, efficiency, and hospital administration of the British army, founded chiefly on the experience of the late war. London, UK: Harrison.

Nisbett RE. 2003. The geography of thought. New York, NY: The Free Press.

Nombembe P. 2018. Sheep slaughtered on Clifton beach as animal rights activists protest. Timeslive, 28 December. Available: https://www.timeslive.co.za/news/south-africa/2018-12-28-sheep-slaughtered-on-clifton-beach-as-animal-rights-activists-protest/ (Accessed 8 January 2019).

Nongxa LG. 2017. Mathematical and statistical foundations and challenges of (big) data sciences. South African Journal of Science, 113(3-4):1-4. https://doi.org/10.17159/sajs.2017/a0200

Norman DA. 2004. Emotional design: Why we love (or hate) everyday things. New York, NY: Basic Books.

Northrop D. 2014. Other globes. In: D Northrop (ed). A companion to world history. USA: Wiley-Blackwell. 497-526. https://doi.org/10.1002/9781118305492.ch33

Oaksford M, Chater N & Larkin J. 2000. Probabilities and polarity biases in conditional inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26:883-889. https://doi.org/10.1037/0278-7393.26.4.883

O’Brien DP. 2009. Human reasoning includes a mental logic. Behavioral and Brain Sciences, 32(1):96-97. https://doi.org/10.1017/S0140525X09000429

O’Connor RC & Kirtley OJ. 2018. The integrated motivational-volitional model of suicidal behaviour. Philosophical Transactions of the Royal Society B, 375(1754):1-10. https://doi.org/10.1098/rstb.2017.0268

Odlum M & Yoon S. 2015. What can we learn about the Ebola outbreak from tweets?. American Journal of Infection Control, 43(6):563-571. https://doi.org/10.1016/j.ajic.2015.02.023

Ohri A. 2017. Python for R users: A data science approach. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119126805

O’Leary DE. 2014. Embedding AI and crowdsourcing in the big data lake. IEEE Intelligent Systems, 29(5): 70-73. https://doi.org/10.1109/MIS.2014.82

Oliva A & Torralba A. 2006. Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155:23-36. https://doi.org/10.1016/S0079-6123(06)55002-2

Olshannikova E, Olsson T, Huhtamäki J & Kärkkäinen H. 2017. Conceptualizing big social data. Journal of Big Data, 4(1):1-19. https://doi.org/10.1186/s40537-017-0063-x

Olshannikova E, Ometov A, Koucheryavy Y & Olsson T. 2015. Visualizing big data with augmented and virtual reality: Challenges and research agenda. Journal of Big Data, 2(1):1-27. https://doi.org/10.1186/s40537-015-0031-2

O’Neil C. 2017. Weapons of math destruction: How big data increases inequality and threatens democracy. New York, NY: Crown.

Orgad S. 2005. The transformative potential of online communication: The case of breast cancer patients’ Internet spaces. Feminist Media Studies, 5(2):141-161. https://doi.org/10.1080/14680770500111980

Orgad S. 2009. How can researchers make sense of the issues involved in collecting and interpreting online and offline data? In: AN Markham & NK Baym (eds). Internet inquiry: Conversations about method. Los Angeles, CA: Sage Publications. 33-53. https://doi.org/10.4135/9781483329086.n4

Osborne S. 2018. South Africa votes through motion that could lead to seizure of land from white farmers without compensation. Independent, 1 March. Available: https://www.independent.co.uk/news/world/africa/south-africa-white-farms-land-seizure-anc-race-relations-a8234461.html (Accessed 8 January 2019).

Osgood CE & Walker EG. 1959. Motivation and language behavior: A content analysis of suicide notes. Journal of Abnormal and Social Psychology, 59:5-67. https://doi.org/10.1037/h0047078

O’Sullivan D. 2017. Big data: Why (oh why) this computational science? In: J Thatcher, A Shears & J Eckert (eds). Geography and the geoweb: Rethinking research in the advent of big data. 1-27. UC Berkeley. Available: https://escholarship.org/uc/item/0rn5n832 (Accessed 29 December 2017).

Owens T. 2011. Defining data for humanists: Text, artifact, information or evidence?. Journal of Digital Humanities, 1(1):1-4. Available: http://journalofdigitalhumanities.org/1-1/defining-data-for-humanists-by-trevor-owens/ (Accessed 25 April 2018).

Palmer D. 2012. Text Preprocessing. In: N Damerau & FJ Indurkhya (eds). Handbook of natural language processing . New York, NY: CRC Press. 9-30.

Pang B & Lee L. 2004. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: D Scott, W Daelemans & MA. Walker (eds). Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Barcelona: Association for Computational Linguistics:1-8. https://doi.org/10.3115/1218955.1218990

Parastadidis S. 2009. A platform for all that we know: Creating a knowledge-driven research infrastructure. In: T Hey, S Tansley & K Tolle (eds). The fourth paradigm: Data-intensive scientific discovery. Redmond, WA: Microsoft Research. 165-172. https://doi.org/10.1108/13673270210440839

Park HW & Leydesdorff L. 2013. Decomposing social and semantic networks in emerging “big data” research. Journal of Informetrics, 7(3):756-765. https://doi.org/10.1016/j.joi.2013.05.004

Parker C, Saundage D & Lee CY. 2011. Can qualitative content analysis be adapted for use by social informaticians to study social media discourse? A position paper. In: P Seltsikas, D Bunker, L Dawson & M Iddulska (eds). Proceedings of the 22nd Australasian Conference on Information Systems: Identifying the Information Systems Discipline. Sydney, Australia: Association of Information Systems:1-7.

Patchin JW & Hinduja S. 2006. Bullies move beyond the schoolyard: A preliminary look at cuberbullying. Youth Violence and Juvenile Justice, 4(2):148-169. https://doi.org/10.1177/1541204006286288

Patel K. 2017. Big data, its issues and challenges. IJEDR, 5(3): 124-126.

Patil DJ. 2011. Building data science teams. Sebastopol, CA: O’Reilly Media, Inc.

Patterson RE, Blaha LM, Grinstein GG, Liggett KK, Kaveney DE, Sheldon KC, Havig PR & Moore JA. 2014. A human cognition framework for information visualization. Computers & Graphics, 42:42-48. https://doi.org/10.1016/j.cag.2014.03.002

Patty JW & Penn EM. 2015. Analyzing big data: Social choice and measurement. PS: Political Science & Politics, 48(1):95-101. https://doi.org/10.1017/S1049096514001814

Pavlovskaya M. 2017. Qualitative GIS. In: D Richardson, N Castree, M Goodchild, A Kobayashi, W Liu & RA Marston (eds). The international encyclopedia of geography. USA: John Wiley and Sons, Ltd. 1-11. https://doi.org/10.1002/9781118786352.wbieg1156

Pawlicka U. 2017. Data, collaboration, laboratory: Bringing concepts from science into humanities practice. English Studies, 98(5):526-541. https://doi.org/10.1080/0013838X.2017.1332022

Pedone R, Hummel JE & Holyoak KJ. 2001. The use of diagrams in analogical problem solving. Memory & Cognition, 29(2):214-221. https://doi.org/10.3758/BF03194915

Pennebaker JW, Francis ME & Booth RJ. 2001. Linguistic inquiry and word count (LIWC 2001). Mahwah, NJ: Erlbaum.

Pentzold C. & Fischer C. 2017. Framing big data: The discursive construction of a radio cell query in Germany. Big Data & Society, 4(2):1-11. https://doi.org/10.1177/2053951717745897

Perkins L, Redmond E & Wilson J. Seven databases in seven weeks: A guide to modern databases and the NoSQL movement. USA: Pragmatic Bookshelf.

Perrault C. 1964. Parallèle des anciens et des modernes en ce qui regarde les arts et les sciences. Paris: Jean Baptiste Coignard.

Pestian J, Nasrallah H, Matykiewicz P, Bennett A & Leenaars. 2010. Suicide note classification using natural language processing: A content analysis. Biomedical Informatics Insights, 3:19-28. https://doi.org/10.4137/BII.S4706

Peters B. 2012. The big data gold rush. Forbes, 21 June. Available: https://www.forbes.com/sites/bradpeters/2012/06/21/the-big-data-gold-rush/#59809a0eb247 (Accessed 4 December 2017).

Pijoos I, 2018. Vicki Momberg sentenced to an effective 2 years in prison for racist rant. News24, 28 March. Available: https://www.news24.com/SouthAfrica/News/vicki-momberg-sentenced-to-an-effective-2-years-in-prison-for-racist-rant-20180328 (Accessed 8 January 2019).

Pitsilis GK, Ramampiaro H & Langseth H. 2018. Detecting offensive language in tweets using deep learning. arXiv preprint arXiv:1801.04433. Available: https://arxiv.org/abs/1801.04433 (Accessed 18 October 2018).

Ponniah P. 2010. Data warehousing fundamentals for IT professionals. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9780470604137

Pool K & Rosenthal H. 1997. Congress: A political-economic history of roll call voting. Oxford: Oxford University Press.

Popescu AM & Etzioni O. 2007. Extracting product features and opinions from reviews. In: A Kao & SR Poteet (eds). Natural language processing and text mining. London, UK: Springer. 9-28. https://doi.org/10.3115/1220575.1220618

Porter C, Atkinson P & I. Gregory. 2015. Geographical Text Analysis: A new approach to understanding nineteenth-century mortality. Health & Place, 36:25-34. https://doi.org/10.1016/j.healthplace.2015.08.010

Porter TM. 1986. The rise of statistical thinking 1820–1900. Princeton, NJ: Princeton University Press.

Portmess L & Tower S. 2015. Data barns, ambient intelligence and cloud computing: The tacit epistemology and linguistic representation of Big Data. Ethics and Information Technology, 17:1–9. https://doi.org/10.1007/s10676-014-9357-2

Porway J. 2013. You can’t just hack your way to social change. Harvard Business Review, 7 March. Available: https://hbr.org/2013/03/you-cant-just-hack-your-way-to (Accessed 6 November 2017).

Power A, Keane A, Nolan B & O’Neill B. 2017. A lexical database for public textual cyberbullying detection. Revista de Lenguas para Fines Específicos, 23(2):157-186. http://dx.doi.org/10.20420/rlfe.2017.177.

Power, DJ. 2008. Decision support systems concept. In: F Adam & P Humphreys (eds). Encyclopedia of decision making and decision support. Hershey, PA: Information Science Reference. 232-232. https://doi.org/10.4018/978-1-59904-843-7.ch027

Powers Dirette D. 2016. Why the veracity of data matters in health care research. The Open Journal of Occupational Therapy, 4(4):1-4. https://doi.org/10.15453/2168-6408.1324

Pradhan M & Rao N. (In press). Gender justice and food security: The case of public distribution system in India. Progress in Development Studies.

Press G. 2013. A very short history of big data. Forbes, 9 May. Available: https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/#5ffc7ccb65a1 (Accessed 5 November 2017).

Press G. 2015. The hunt for unicorn data scientists lifts salaries for all data analytics professionals. Forbes, 9 October. Available: https://www.forbes.com/sites/gilpress/2015/10/09/the-hunt-for-unicorn-data-scientists-lifts-salaries-for-all-data-analytics-professionals/#2cd9c1fd5258 (Accessed 9 September 2018).

Pretorius J. 2014. “Dubula ibhunu” (shoot the boer): A psycho-political analysis of farm attacks in South Africa. Psychology in Society, (47):21-40.

Prinsloo P. 2016. Some provocations for a future of institutional research: Evidence-based decision-making and séance. In: J Botha & NJ Muller (eds). Institutional research in South African higher education: Intersecting contexts and practices. Stellenbosch: SUN MeDIA. 337-360. https://doi.org/10.18820/9781928357186

Prinsloo P & Rowe M. 2015. Ethical considerations in using student data in an era of ‘big data’. In: W Kilfoil (ed). Moving beyond the hype: A contextualised view of learning with technology in higher education. Pretoria, South Africa: Universities South Africa. 59-64.

Prinsloo P & Slade S. 2017. An elephant in the learning analytics room: The obligation to act. In Proceedings of the Seventh International Learning Analytics & Knowledge Conference. Vancouver, British Columbia, Canada: ACM 46-55. https://doi.org/10.1145/3027385.3027406

Prinsloo P. 2018. Context matters: An African perspective on institutionalizing learning analytics. In: CP Lim & VL Tinio (eds.). Learning analytics for the global South. Quezon City, Philippines: Foundation for Information Technology Education and Development.

Protection of Personal Information Act 2013 (Act No. 4 of 2013). SAICA. Available: https://www.saica.co.za/Portals/0/Technical/LegalAndGovernance/37544_pro25.pdf (Accessed 11 December 2017).

Provost F & Fawcett T. 2013. Data science and its relationship to big data and data-driven decision making. Big Data, 1(1):51-59. https://doi.org/10.1089/big.2013.1508

Pugin L. 2015. The challenge of data in digital musicology. Frontiers in Digital Humanities, 2:1-3. https://doi.org/10.3389/fdigh.2015.00004

Punch KF. 2013. Introduction to social research: Quantitative and qualitative approaches. Thousand Oaks, CA: Sage Publications.

Puschmann C & Burgess J. 2014. Big data, big questions: Metaphors of big data. International Journal of Communication, 8:1690-1709.

Quinn PC & Bhatt RS. 2015. Development of perceptual organization in infancy. In: J Wagemans (eds). The Oxford handbook of perceptual organization. New York, NY: Oxford University Press. 691-792. https://doi.org/10.1093/oxfordhb/9780199686858.013.016

Rahman N & Iverson S. 2015. Big data business intelligence in bank risk analysis. International Journal of Business Intelligence Research, 6(2):55-77. https://doi.org/10.4018/IJBIR.2015070104

Ratner C. 2002. Subjectivity and objectivity in qualitative methodology. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 3(3):1-8. Available: http://www.qualitative-research.net/index.php/fqs/article/view/829 (Accessed 4 December 2017). http://dx.doi.org/10.17169/fqs-3.3.829

Rauscher J. 2014. Grasping cities through literary representations. A mix of qualitative and quantitative approaches to analyze crime novels. Historical Social Research/Historische Sozialforschung, 39(2):68-102. https://dx.doi.org/10.12759/hsr.39.2014.2.68-102

Raymond NA. 2016. Beyond “do no harm” and individual consent: Reckoning with the emerging ethical challenges of civil society’s use of data. In: L Taylor, L Floridi & B van der Sloot (eds). Group privacy: New challenges of data technologies. Cham, Switzerland: Springer. 62-82. https://doi.org/10.1007/978-3-319-46608-8_4

Reeves J. 2014. 9 critical investing lessons from a Nobel prize winner. The Motley Fool, 24 November. Available: https://www.fool.com/slideshow/these-15-states-produce-94-us-natural-gas/?fs_test=False (Accessed 8 May 2018).

Regalado A. 2011. Who coined “cloud computing”?. MIT Technology Review, 31 October. Available: https://www.technologyreview.com/s/425970/who-coined-cloud-computing/ (Accessed 5 December 2017).

Reiberg A. 2016. The construction of an internet policy domain in German parliamentary debates and newspaper articles. Paper presented at the 24th IPSA World Conference on Political Science. 23-28 July 2016. Poznan, Poland: 1-17. https://dx.doi.org/10.1002/epa2.1001

Reips UD, Buchanan T, Krantz JH & McGrawK. 2015. Methodological challenges in the use of the Internet for scientific research: Ten solutions and recommendations. Studia Psychologica, 15(2):139-148. https://doi.org/10.21697/sp.2015.14.2.09

Resnick B. 2016. Researchers just released profile data on 70,000 OkCupid user without permission. Vox, 12 May. Available: https://www.vox.com/2016/5/12/11666116/70000-okcupid-users-data-release (Accessed 11 December 2017).

Reyes A, Rosso P & Veale T. 2013. A multidimensional approach for detecting irony in twitter. Language Resources and Evaluation, 47(1):239-268. https://doi.org/10.1007/s10579-012-9196-x

Reyes JA. 2015. The skinny on big data in education: Learning analytics simplified. TechTrends, 59(2):75-80. https://doi.org/10.1007/s11528-015-0842-1

Reyes-Ortiz JL, Oneto L & Anguita D. 2015. Big data analytics in the cloud: Spark on hadoop vs mpi/openmp on beowulf. Procedia Computer Science, 53:121-130. https://doi.org/10.1016/j.procs.2015.07.286

Richards NM & King JH. 2014. Big data ethics. Wake Forest Law Review, 49:393-432.

Riloff E & Wiebe J. 2003. Learning extraction patterns for subjective expressions. In: D Yarowsky, T Baldwin, A Korhonen, K Livescu & S Bethard (eds). Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing (EMNLP ’03). Seattle, Washington: Association for Computational Linguistics:105-112. https://doi.org/10.3115/1119355.1119369

Risch JS. 2008. On the role of metaphor in information visualization. The Computing Research Repository.arXiv preprint arXiv:0809.0884: 1-20.

Ritchie K. 2018. Vicki Momberg shouldn’t be alone for long. IOL, 1 April. Available: https://www.iol.co.za/sundayindependent/dispatch/vicki-momberg-shouldnt-be-alone-for-long-14183453 (Accessed 8 January 2019).

Rob P, Coronel C, Crockett K & Morries S. 2013. Database principles: Fundamentals of design, implementation and management. London, UK: Cengage Learning EMEA.

Robertson H & Travaglia J. 2015. Big data problems we face today can be traced to the social ordering practices of the 19th century. Impact of Social Sciences Blog:1-6. Available: http://blogs.lse.ac.uk/impactofsocialsciences/2015/10/13/ideological-inheritances-in-the-data-revolution/ (Accessed 21 November 2018).

Roelf W. 2018. South African parliament endorses report on disputed land reform. Reuters, 4 December. Available: https://www.reuters.com/article/us-safrica-land/south-african-parliament-endorses-report-on-disputed-land-reform-idUSKBN1O31WL (Accessed 8 January 2019).

Rogers S. 2013. Twitter’s languages of New York mapped. The Guardian, 21 February. Available: https://www.theguardian.com/news/datablog/interactive/2013/feb/21/twitter-languages-new-york-mapped (Accessed 4 December 2017).

Rojas JAR, Kery MB, Rosenthal S & Dey A. 2017. Sampling techniques to improve big data exploration. Paper presented at the 2017 IEEE 7th symposium on large data analysis and visualization (LDAV). 2 October 2017. Phoenix, Arizona: IEEE:26-35. https://doi.org/10.1109/LDAV.2017.8231848

Romero C & Ventura S. 2013. Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1):12-27. https://doi.org/10.1002/widm.1075

Roos J, Bart V & Statler M. 2004. Playing seriously with strategy. Long Range Planning, 37:549-568. https://doi.org/10.1016/j.lrp.2004.09.005

Rose D. 2016. Data science: Create Teams That Ask the Right Questions and Deliver Real value. Berkeley, CA: Apress.

Rosenberg A. 2010. Virtual world research ethics and the private/public distinction. International Journal of Internet Research Ethics, 3(12):23-27.

Rosenholtz R, Li Y & Nakano L. 2007. Measuring visual clutter. Journal of Vision, 7(2): 17-17. https://doi.org/10.1167/7.2.17

Rosenzweig P. 2012. Whither privacy?. Surveillance & Society, 10(3-4):344–347. https://doi.org/10.24908/ss.v10i3/4.4528

Rourke L, Anderson T, Garrison DR & Archer W. 2001. Methodological issues in the content analysis of computer conference transcripts. International Journal of Artificial Intelligence in Education, 12:8-22.

Rousseeuw PJ & Leroy AM. 2005. Robust regression and outlier detection. Canada: John Wiley & Sons.

Russom P. 2011. Big data analytics. TDWI Best Practices Report, Fourth Quarter, 19(4):1-34.

Ruths D & Pfeffer J. 2014. Social media for large studies of behavior. Science, 346(6213):1063-1064. https://doi.org/10.1126/science.346.6213.1063

Sabherwal R & Becerra-Fernandez I. 2011. Business intelligence: Practices, technologies and management. USA: John Wiley & Sons.

Sadkowsky T. 2014. Data scientists: The new rock stars of the tech world. Techopedia, 2 July. Available: https://www.techopedia.com/2/28526/it-business/it-careers/data-scientists-the-new-rock-stars-of-the-tech-world (Accessed 9 September 2018).

Saghai Y. 2013. Salvaging the concept of nudge. Journal of Medical Ethics, 39(8):487-493. https://doi.org/10.1136/medethics-2012-100727

Salah AA, Manovich L, Salah AA & Chow J. 2013. Combining cultural analytics and networks analysis: Studying a social network site with user-generated content. Journal of Broadcasting & Electronic Media, 57(3):409-426. https://doi.org/10.1080/08838151.2013.816710

Salmon M. 2017. Emily Robinson, from social scientists to data scientist. Forwards, 2 February. Available: https://forwards.github.io/blog/2017/02/07/emily-robinson-from-social-scientist-to-data-scientist/ (Accessed 11 October 2018).

Santoso LW. 2017. Data warehouse with big data technology for higher education. Procedia Computer Science, 124:93-99. https://doi.org/10.1016/j.procs.2017.12.134

Sartorius B, Jacobsen H, Törner A & Giesecke J. 2006. Description of a new all cause mortality surveillance system in Sweden as a warning system using threshold detection algorithms. European Journal of Epidemiology, 21(3):181-189. https://doi.org/10.1007/s10654-005-5923-6

Savage M & Burrows R. 2007. The coming crisis of empirical sociology. Sociology, 41(5):885-899. https://doi.org/10.1177/0038038507080443

Schilling PL & Bozic KJ. 2014. The big to do about “big data”. Clinical Orthopaedics and Related Research®, 472(11):3270-3272. https://doi.org/10.1007/s11999-014-3887-0

Schirrmacher F. 2015. Ego: The game of life. Translated by N Somers. Cambridge, UK: Polity Press.

Schmidt E. 2010. Every 2 days we create as much information as we did up to 2003. TechCrunch, 4 August. Available: https://techcrunch.com/2010/08/04/schmidt-data/ (Accessed 7 December 2017).

Schnapp J, Presner T & Lunenfeld P. 2009. The digital humanities manifesto 2.0. Available: http://www.humanitiesblast.com/manifesto/Manifesto_V2.pdf (Accessed 7 December 2017).

Schöch C. 2013. Big? Smart? Clean? Messy? Data in the Humanities. Journal of Digital Humanities, 2(3):2-13.

Schroyens W & Schaeken W. 2003. A critique of Oaksford, Chater, and Larkin’s (2000) conditional probability model of conditional reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(1): 140-149. https://doi.org/10.1037/0278-7393.29.1.140

Schüssler R. 2005. On the anatomy of probabilism. In: JKraye & R Saarinen (eds). Moral philosophy on the threshold of modernity (Vol. 57). Dordrecht: Springer. 91-113. https://doi.org/10.1007/1-4020-3001-0_5

Scott J. 2017. Social network analysis. Los Angeles, CA: Sage.

Seddon JJ & Currie WL. 2017. A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70:300-307. https://doi.org/10.1016/j.jbusres.2016.08.003

Sekhotho K. 2018. SA’s word of the year 2018 is.... EWN, 16 October. Available: https://ewn.co.za/2018/10/16/sa-s-word-of-the-year-2018-is (Accessed 8 January 2019).

Selinger E & Whyte K. 2011. Is there a right way to nudge? The practice and ethics of choice architecture. Sociology Compass, 5(10):923-935. https://doi.org/10.1111/j.1751-9020.2011.00413.x

Selwyn N. 2015. Data entry: towards the critical study of digital data and education. Learning, Media and Technology, 40(1):64-82. https://doi.org/10.1080/17439884.2014.921628

Serfass D, Nowak A & Sherman R. 2017. Big data in psychological research. In: RR Vllacher, SJ Read & A (eds).Computational Social Psychology. New York, NY and London, UK: Routledge. 332-348. https://doi.org/10.4324/9781315173726-15

Serrano-Guerrero J, Olivas JA, Romero FP & Herrera-Viedma E. 2015. Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311:18-38. https://doi.org/10.1016/j.ins.2015.03.040

Shah DV, Cappella JN & Neuman WR. 2015. Big data, digital media, and computational social science: Possibilities and perils. The ANNALS of the American Academy of Political and Social Science, 659(1):6-13. https://doi.org/10.1177/0002716215572084

Shahrivari, S. & S. Jalili. 2014. Beyond batch processing: Towards real-time and streaming big data. Computers, 3(4): 117-119. https://doi.org/10.3390/computers3040117

Sharda R, Delen D & Turban E. 2014. Business intelligence and analytics: Systems for decision support. Harlow, UK: Pearson Education.

Shneidman ES & Farberow NL. (eds). 1957. Clues to suicide (Volume 56981). USA: McGraw-Hill Companies.

Shoro AG & Soomro TR. 2015. Big data analysis: Apache spark perspective. Global Journal of Computer Science and Technology, 15(1):1-9. https://doi.org/10.14445/22312803/IJCTT-V19P103

Shulman J. 2017. A good job for humanists. The Andrew W. Mellon Foundation, 6 February. Available: https://mellon.org/resources/shared-experiences-blog/good-job-humanists/ (Accessed 4 September 2018).

Shulman SW. 2014. Measuring reliability and validity in human coding and machine classification. Paper presented at the CAQDAS Conference: Past, Present and Future – 25 Years of CAQDAS. 1-3 May, 2014. East Horsley, Surrey, United Kingdom.

Sibanda, O. 2012 ‘Social pain and social death’: Poor white stigma in post-apartheid South Africa, a case of West Bank in East London. Anthropology Southern Africa, 35(3-4): 81-90. https://doi.org/10.1080/23323256.2012.11500027

Silva S, Santos BS & Madeira J. 2011. Using color in visualization: A survey. Computers & Graphics, 35(2):320-333. https://doi.org/10.1016/j.cag.2010.11.015

Simons DJ. 2000. Attentional capture and inattentional blindness. Trends in Cognitive Sciences, 4(4):147-155. https://doi.org/10.1016/S1364-6613(00)01455-8

Simpson JA. 1989. Nathaniel Bailey and the search for a lexicographical style. In: G James (ed). Lexicographers and their works. Exeter: University of Exeter Press. 181-182.

Singh S. 2000. The code book: The secret history of codes and code-breaking. London, UK: Fourth Estate.

Singpurwalla ND & Landon J. 2014. Solving a system of high-dimensional equations by MCMC. In: SE Ahmed (eds). Perspectives on big data analysis: Methodologies and applications. USA: American Mathematical Society. 11-20. https://doi.org/10.1090/conm/622/12437

Skolmen DE & Gerber M. 2015. Protection of personal information in the South African Cloud Computing environment: A framework for Cloud Computing adoption. Paper presented at Information security for South Africa (ISSA) 2015. 12-13 August, 2015. Johannesburg, South Africa: IEEE:1-10. https://doi.org/10.1109/ISSA.2015.7335049

Slauter W. 2011. Write up your dead: The bills of mortality and the London plague of 1665. Media History, 17(1):1-15. https://doi.org/10.1080/13688804.2011.532371

Slone DJ. 2009. Visualizing qualitative information. The Qualitative Report, 14:488-497.

Smith N. 2017. Cultivating the technological imagination. Cultural Studies, 31(5): 712-714. https://doi.org/10.1080/09502386.2015.1057857

Smith T. 2016. The software stack explained. DZone/IoT Zone, 19 May. Available: https://dzone.com/articles/using-vr-to-test-urban-designs (Accessed 21 May 2018).

Snijders C, Matzat U & Reips UD. 2012. Big data: Big gaps of knowledge in the field of internet science. International Journal of Internet Science, 7(1):1–5.

Sparks R, Ickowicz A & Lenz HJ. 2016. An insight on big data analytics. In: N Japkowicz & J Stefanowski (eds). Big data analysis: New algorithms for a new society. Switzerland: Springer. 33-48. https://doi.org/10.1007/978-3-319-26989-4_2

Spier F. 2014. Big history. In: D Northrop (eds). A companion to world history. USA: Wiley-Blackwell. 171-184. https://doi.org/10.1002/9781118305492.ch11

Spitzberg BH & Gawron JM. 2016. Toward online linguistic surveillance of threatening messages. Journal of Digital Forensics, Security and Law, 11(3):43-78. https://doi.org/10.15394/jdfsl.2016.1418

Srivastava P & Hopwood N. 2009. A practical iterative framework for qualitative data analysis. International Journal of Qualitative Methods, 8(1):76-84. https://doi.org/10.1177/160940690900800107

Stadelmann, T., K. Stockinger, G.H. Bürki & M. Braschler. 2018. Data scientists. (In press). In: M. Braschler, TK Stadelmann & K Stockinger (eds). Applied data science: Lessons learned from the data-driven business. Springer. https://doi.org/10.1007/978-3-030-11821-1_3

Staff reporter. 2014. The history of Internet access in South Africa. MyBroadband, 30 November. Available: https://mybroadband.co.za/news/internet/114645-the-history-of-internet-access-in-south-africa.html (accessed 10 December 2017).

Stamp LD. 1965. The geography of life and death. 5th Edition. Ithaca, New York, NY: Cornell University Press.

Stanley D. 2016. Ada Lovelace, poet of science: The first computer programmer. USA: Simon and Schuster.

Steinhauser G. 2018. Trump Tweet on South African land overhaul draws government’s ire. The Wall Street Journal, 23 August. Available: https://www.wsj.com/articles/trump-tweet-on-south-african-land-reform-draws-governments-ire-1535017460 (Accessed 8 January 2019).

Stenhaug B. 2017. Teaching data science is broken. Towards Data Science, 22 August. Available: https://towardsdatascience.com/teaching-data-science-is-broken-4d551440df59 (Accessed 10 September 2018).

Steyn AS. 2016. A new laager for a “new” South Africa: Afrikaans film and the imagined boundaries of Afrikanerdom. Unpublished Doctoral dissertation. Stellenbosch: University of Stellenbosch.

Stockmann D. 2016. Towards area-smart data science: Critical questions for working with big data from China. Policy & Internet: 1-32. https://doi.org/10.2139/ssrn.2718120

Stone M. 2009. Information visualisation: Challenge for the humanities. Working Together or Apart: Promoting the Next Generation of Digital Scholarship: 43-56. Washington, DC: Council on Library and Information Resources.

Stroop JR. 1935. Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18:643-661.

Storey VC & Song IY. 2017. Big data technologies and management: What conceptual modeling can do. Data & Knowledge Engineering, 108:50-67. https://doi.org/10.1016/j.datak.2017.01.001

Stratton AK. 2012. The role of emotion in rational decision-making. Unpublished Doctoral dissertation. Australia: University of Adelaide.

Stubbs, E. 2014. The value of business analytics. In: J Liebowitz (ed). Business analytics: An introduction. New York, NY: CRC Press. 1-28. https://doi.org/10.1002/9781118983881.ch1

Stulpe A & Lemke M. 2016. Blended reading. In: M Lemke & G Wiedemann (eds). Text Mining in den Sozialwissenschaften. Wiesbaden: Springer. 17-61. https://doi.org/10.1007/978-3-658-07224-7_2

Sula CA. 2012. Visualizing social connections in the humanities: Beyond bibliometrics. Bulletin of the Association for Information Science and Technology, 38(4):31-35. https://doi.org/10.1002/bult.2012.1720380409

Sulis E., Farías DIH, Rosso P, Patti V & Ruffo G. 2016. Figurative messages and affect in twitter: Differences between# irony,# sarcasm and# not. Knowledge-Based Systems, 108:132-143. https://doi.org/10.1016/j.knosys.2016.05.035

Sveningsson Elm M. 2009. How do various notions of privacy influence decisions in qualitative Internet research? In: AN Markham & NK Baym (eds). Internet inquiry: Conversations about method. Los Angeles, CA: Sage Publications. 69-87. https://doi.org/10.4135/9781483329086.n7

Svolba G. 2017. Applying data science: Business case studies using SAS. Cary, NC: SAS Institute.

Swart H. 2017. Social media: Big Brother, and his brother, are watching you via data mining. Daily Maverick, 11 October. Available: https://www.dailymaverick.co.za/article/2017-10-11-social-media-big-brother-and-his-brother-is-watching-you-via-data-mining/#.Wqzxqk0h05t (Accessed 17 March 2018).

Swart H. 2018. Government surveillance of social media is rife. Guess who’s selling your data? Daily Maverick, 25 April. Available: https://www.dailymaverick.co.za/article/2018-04-25-government-surveillance-of-social-media-is-rife-guess-whos-selling-your-data/#.WuBJc4h97cs (Accessed 25 April 2018).

Szeman I. 2017. On the politics of extraction. Cultural Studies, 31(2-3):440-447. https://doi.org/10.1080/09502386.2017.1303436

Taboada M. 2016. Sentment analysis: An overview from linguistics. Annual Review of Linguistcs, 2(1):325–347. https://doi.org/10.1146/annurev-linguistics-011415-040518

Taboada M, Brooke J, Tofloski M, Voll K & Stede M. 2011. Lexicon-based methods for sentment analysis. Computational Linguistcs, 37(2):267–307. https://doi.org/10.1162/COLI_a_00049

Taylor E. 2013. Surveillance schools. Basingstoke: Palgrave Macmillan. https://doi.org/10.1057/9781137308863

Taylor JE, Gregory IN & Donaldson CE. 2017. Combining close and distant reading: A multiscalar analysis of the English Lake District’s historical soundscape. International Journal of Humanities and Arts Computing. Available: http://eprints.lancs.ac.uk/89167/1/IJHAC_REVISEDTaylorGregoryDonaldson_Sound.pdf (Accessed 5 April 2018).

Taylor L. 2017. What is data justice? The case for connecting digital rights and freedoms globally. Big Data & Society, 4(2):1-14. https://doi.org/10.2139/ssrn.2918779

Tembo T. 2018. ‘White people in squatter camps’: Google responds. IOL, 20 June. Available: https://www.iol.co.za/capeargus/news/white-people-in-squatter-camps-google-responds-15468240 (Accessed: 21 June 2018).

Thaler RH & Sunstein CR. 2008. Nudge: Improving decisions about health, wealth, and happiness. USA: Yale University Press.

Thamm M. 2018. The imperative of challenging the ‘white genocide’ and land expropriation narrative abroad. The Daily Maverick, 18 May. Available: https://www.dailymaverick.co.za/opinionista/2018-05-18-the-imperative-of-challenging-the-white-genocide-and-land-expropriation-narrative-abroad/ (Accessed 9 March 2019).

Thelwall M. 2010. Researching the public web. eResearch Ethics, 12 July. Available: https://www.ehumanities.nl/researching-the-public-web/ (Accessed 25 April 2018).

Thelwall M, Buckley K & Paltoglou G. 2012. Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 63(1):163–173. https://doi.org/10.1002/asi.21662

Theunissen PS. 2015. Being ‘Afrikaans’: A contested identity. Paper presented at the International Communication Association Annual Conference, San Juan, Puerto Rico. 21-25 May 2015:1-7.

Toonders J. 2014. Data is the new oil of the digital economy. Wired, July. Available: https://www.wired.com/insights/2014/07/data-new-oil-digital-economy/ (Accessed 2 December 2017).

Tracy SJ. 2010. Qualitative quality: Eight ‘big-tent’ criteria for excellent qualitative research. Qualitative Inquiry, 16(10):837-851. https://doi.org/10.1177/1077800410383121

Tufekci Z. 2014. Engineering the public: Big data, surveillance and computational politics. First Monday, 19(7):1-16. http://www.firstmonday.dk/ojs/index.php/fm/article/view/4901/4097 (Accessed 17 March 2018). https://doi.org/10.5210/fm.v19i7.4901

Tufte ER. 1986. The visual display of quantitative information. Cheshire, CT: Graphic Press.

Tufte ER. 1990. Envisioning information. Cheshire, CT: Graphic Press.

Tufte ER. 2006. Beautiful evidence. Cheshire, CT: Graphic Press.

Tummons J. 2014. Using software for qualitative data analysis: Research outside paradigmatic boundaries. In: M Hand & S Hillyard (eds). Big data? Qualitative approaches to digital research. UK: Emerald Group Publishing Limited. 155-177. https://doi.org/10.1108/S1042-319220140000013010

Turney PD. 2002. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics:417-424. https://doi.org/10.3115/1073083.1073153

Tversky B. 2005. Visuospatial reasoning. In: K Holyoak & R Morrison (eds). Handbook of reasoning. Cambridge, UK: Cambridge University Press. 209-249.

Vaisman A. & Zimányi E. 2014. Data warehouse systems design and implementation. Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-54655-6

van der Aalst, WM. 2014. Data scientist: The engineer of the future. In: K Mertins, F Bénaben, R Poler & JP Bourrières (eds). Enterprise interoperability VI: Interoperability for agility, resilience and plasticity of collaborations (Vol 7). Switzerland: Springer Science & Business Media. 13-26. https://doi.org/10.1007/978-3-319-04948-9_2

van der Aalst WM. 2016. Process mining: data science in action. Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-662-49851-4

Van der Westhuizen, C. 2016. Afrikaners in post-apartheid South Africa: Inward migration and enclave nationalism. HTS Theological Studies, 72(4):1-9. https://doi.org/10.4102/hts.v72i4.3351

van Dijck J. 2014. Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2):197-208. https://doi.org/10.24908/ss.v12i2.4776

van Dijck J. 2016. Big data, grand challenges: On digitization and humanities research. KWALON, 21(1):8-18. Available: https://dspace.library.uu.nl/handle/1874/350785 (Accessed 5 April 2018).

van Es K & Schäfer MT. 2017. New brave world. In: MT Schäfer & K van Es (eds). The datafied society: Studying culture through data. Amsterdam: Amsterdam University Press. 13-22. https://doi.org/10.1515/9789048531011-003

van Hee C, Jacobs G, Emmery C, Desmet B, Lefever E, Verhoeven B, De Pauw G, Daelemans W & Hoste V. 2018. Automatic detection of cyberbullying in social media text. arXiv preprint arXiv:1801.05617. Available: https://arxiv.org/pdf/1801.05617.pdf (Accessed 18 October 2018).

Van Hee C, Lefever E & Hoste V. 2018. We usually don’t like going to the dentist. Using common sense to detect irony on Twitter. Computational Linguistics, pp.1-63. https://doi.org/10.1162/coli_a_00337

van Holthoon F. 2017. A case for the Enlightenment, ten essays. Berlin, Germany: Logos Verlag. on social networking sites: From technological feasibility to desirability. Telematics and Informatics, 32(1):89-97. https://doi.org/10.1016/j.tele.2014.04.002

Vassakis K, Petrakis E & Kopanakis I. 2018. Big data analytics: Applications, prospects and challenges. In G Skourletopoulos, G Mastorakis, CX Mavromoustakis, C Dobre & E Pallis (eds). Mobile big data: A roadmap from models to technologies. Cham, Switzerland: Springer. 3-20. https://doi.org/10.1016/j.tele.2014.04.002

Veinot TC. 2007. ‘The eyes of the power company’: Workplace information practices of a vault inspector. The Library Quarterly, 77(2):157-179. https://doi.org/10.1086/517842

Verdinelli S & Scagnoli NI. 2013. Data display in qualitative research. International Journal of Qualitative Methods, 12(1):359-381. https://doi.org/10.1177/160940691301200117

Verma A. 2018. Big data trends in 2018. Whizlabs, 22 January. Available: https://www.whizlabs.com/blog/big-data-trends-in-2018/ (Accessed: 15 November 2018).

Verwey C & Quayle M. 2012. Whiteness, racism, and Afrikaner identity in post-apartheid South Africa. African Affairs, 111(445):551-575. https://doi.org/10.1093/afraf/ads056

Vieweg SE. 2012. Situational awareness in mass emergency: A behavioral and linguistic analysis of microblogged communications. Unpublished Doctoral dissertation. Boulder, Colorado: University of Colorado.

Visagie, R. 2018. Struggle(s) for self-determination: Afrikaner aspirations in the twenty-first century. Unpublished Master’s dissertation. Stellenbosch: University of Stellenbosch

Viseu A. 2015. Integration of social science into research is crucial. Nature, 525(7569):291. https://doi.org/10.1038/525291a

Walker D & Dongarra J. 1996. MPI: A standard message passing interface. Supercomputer, 12:56-68.

Walsh CG, Ribeiro JD & Franklin JC. 2017. Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3):457-469. https://doi.org/10.1177/2167702617691560

Wamba SF, Akter S, Edwards A, Chopin G & Gnanzou D. 2015. How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165:234-246. https://doi.org/10.1016/j.ijpe.2014.12.031

Wang Baldonado MQ, Woodruff A & Kuchinsky A. 2000. Guidelines for using multiple views in information visualization. In: M De Marsico, S Levialdi & E Panizzi (eds). Proceedings of the Working Conference on Advanced Visual Interfaces. 23-26 May 2000. New York, NY: ACM:110-119.

Wang CH. 2016. A novel approach to conduct the importance-satisfaction analysis for acquiring typical user groups in business-intelligence systems. Computers in Human Behavior, 54:673-681. https://doi.org/10.1016/j.chb.2015.08.014

Wang H, Can D, Kazemzadeh A, Bar F & Narayanan S. 2012. A system for real-time twitter sentiment analysis of 2012 us presidential election cycle. In: M Zhang (ed). Proceedings of the ACL 2012 System Demonstrations. 8-14 July 2012. Stroudsburg, PA: Association for Computational Linguistics:115-120.

Wang T. 2013. Big data needs thick data. Ethnography Matters, 13 May. Available: http://ethnographymatters.net/blog/2013/05/13/big-data-needs-thick-data/ (Accessed 24 April 2018).

Wang Y & Hajli N. 2017. Exploring the path to big data analytics success in healthcare. Journal of Business Research, 70:287-299. https://doi.org/10.1016/j.jbusres.2016.08.002

Wang Y, Kung L & Byrd TA. 2018. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126:3-13. https://doi.org/10.1016/j.techfore.2015.12.019

Warden P. 2011. Big data glossary. USA: O’Reilly Media, Inc.

Warrell JG & Jacobsen M. 2014. Internet research ethics and the policy gap for ethical practice in online research settings. The Canadian Journal of Higher Education, 44(1):22-37.

Watson HJ. 2014. Tutorial: Big data analytics: Concepts, technologies, and applications. Communications of the Association for Information Systems, 34(1):1247-1268. https://doi.org/10.17705/1CAIS.03465

Watt IP. 1957. The rise of the novel: Studies in Defoe, Richardson and Fielding. Berkeley, CA: University of California Press.

Weiss SM & Indurkhya N. 1998. Predictive data mining: A practical guide. USA: Morgan Kaufmann Publishers, Inc.

Wertheimer M. 1938. Gestalt theory. In: WD Ellis (ed.). A source book of Gestalt psychology. London, UK: Routledge and Kegan Paul. 71-88.

Wheeler C. 2016. Big history in South Africa? Pascaptrust, 23 May. Available: http://pascap.org.za/big-history-in-south-africa/ (Aaccessed 20 March 2018).

White T. 2015. Hadoop: The definitive guide. Sebastopol, CA: O’Reilly Media, Inc.

Whiteman N. 2010. Control and contingency: Maintaining ethical stances in research. International Journal of Internet Research Ethics, 3(12):6-22.

Whitmore A, Agarwal A & Da Xu L. 2015. The Internet of Things – A survey of topics and trends. Information Systems Frontiers, 17(2):261-274. https://doi.org/10.1007/s10796-014-9489-2

Whyte JK, Ewenstein B, Hales M & Tidd D. 2007. Visual practices and the objects used in their design. Building Research & Information, 35(1):18-27. https://doi.org/10.1080/09613210601036697

Wilkinson K. 2017. Comment: Does AfroForum care about getting farm murder statistics right? Africa Check, 24 November. Available: https://africacheck.org/2017/11/24/comment-does-afriforum-care-about-getting-farm-murder-statistics-right/ (Accessed 7 March 2019).

Williams ML & Burnap P. 2016. Cyberhate on social media in the aftermath of Woolwich: A case study in computational criminology and big data. British Journal of Criminology, 56(2):211-238. https://doi.org/10.1093/bjc/azv059

Williamson B. 2017. Big data in education: The digital future of learning, policy and practice. London, UK: Sage Publications.

Willis III JE, Campbell j & Pistilli M. 2013. Ethics, big data, and analytics: A model for application. EDUCAUSE Review, 6 May. Available: https://er.educause.edu/articles/2013/5/ethics-big-data-and-analytics-a-model-for-application (Accessed 8 May 2018).

Wills T. 2016. Social media as a research method. Communication Research and Practice, 2(1):7-19. https://doi.org/10.1080/22041451.2016.1155312

Woodie A. 2015. The humanist’s emerging role in big data. Datanami, 21 January. Available: https://www.datanami.com/2015/01/21/humanists-emerging-role-big-data/ (Accessed 7 March 2019).

Woods M, Paulus T, Atkins DP & Macklin R. 2016. Advancing qualitative research using qualitative data analysis software (QDAS)? Reviewing potential versus practice in published studies using ATLAS.ti and NVivo, 1994–2013. Social Science Computer Review, 34(5):597-617. https://doi.org/10.1177/0894439315596311

Wolfinger E. 2016. “But it’s already public, right?”: The ethics of using online data. Data Driven Journalism, 25 November. Available http://datadrivenjournalism.net/news_and_analysis/but_its_already_public_right_the_ethics_of_using_online_data (Accessed 5 October 2017).

Wortmann F & Flüchter K. 2015. Internet of things. Business & Information Systems Engineering, 57(3):221-224. https://doi.org/10.1007/s12599-015-0383-3

Wu C, Buyya R & Ramamohanarao K. 2016. Big data analytics= Machine learning+ Cloud computing. arXiv preprint arXiv:1601.03115:1-27. Available https://arxiv.org/ftp/arxiv/papers/1601/1601.03115.pdf (Accessed 4 November 2017).

Yang H, Willis A, De Roeck A & Nuseibeh B. 2012. A hybrid model for automatic emotion recognition in suicide notes. Biomedical Informatics Insights, 5:17-30. https://doi.org/10.4137/BII.S8948

Yoder-Wise PS & Kowalski K. 2003. The power of storytelling. Nursing Outlook, 51(1): 37-42. https://doi.org/10.1067/mno.2003.2

Youngman PA & Hadzikadic M (eds). 2014. Complexity and the human experience: Modeling complexity in the humanities and social sciences. Singapore: Pan Stanford Publishing. https://doi.org/10.1201/b16877

Youtie J, Porter AL & Huang Y. 2017. Early social science research about big data. Science and Public Policy, 44(1):65-74. https://doi.org/10.1093/scipol/scw021

Zacharis NZ. 2015. A multivariate approach to predicting student outcomes in web-enabled blended learning courses. The Internet and Higher Education, 27:44-53. https://doi.org/10.1016/j.iheduc.2015.05.002

Zhang C, Zeng D, Li J, Wang FY & Zuo W. 2009. Sentiment analysis of Chinese documents: From sentence to document level. Journal of the American Society for Information Science and Technology, 60(12):2474-2487. https://doi.org/10.1002/asi.21206

Zhang S. 2016. Scientists are just as confused about the ethics of big-data research as you. Wired, 20 May. Available: https://www.wired.com/2016/05/scientists-just-confused-ethics-big-data-research/ (Accessed 11 December 2017).

Zhang Q, Yang LT, Chen Z & Li P. 2018. High-order possibilistic c-means algorithms based on tensor decompositions for big data in IoT. Information Fusion, 39:72-80. https://doi.org/10.1016/j.inffus.2017.04.002

Zhu Y. & Xiong Y. 2015. Towards data science. Data Science Journal, 14(8):1-7. https://doi.org/10.5334/dsj-2015-008

Zimmer M. 2010. “But the data is already public”: On the ethics of research in Facebook. Ethics and Information Technology, 12(4):313-325. https://doi.org/10.1007/s10676-010-9227-5

Zimmer M. 2016. OkCupid study reveals the perils of big-data science. Wired, 14 May. Available: https://www.wired.com/2016/05/okcupid-study-reveals-perils-big-data-science/ (Accessed 11 December 2017).

Zuze TL & Reddy V. 2014. School resources and the gender reading literacy gap in South African schools. International Journal of Educational Development, 36:100-107. https://doi.org/10.1016/j.ijedudev.2013.10.002

Zwitter A. 2014. Big data ethics. Big Data & Society, 1(2):1-6. https://doi.org/10.1177/2053951714559253

Published
December 1, 2019

Details about the available publication format: PDF

PDF
ISBN-13 (15)
9781928424376
Date of first publication (11)
2019-12-01

Details about the available publication format: Paperback

Paperback
ISBN-13 (15)
9781928424369
Date of first publication (11)
2019-12-01
Physical Dimensions
175mm x 245mm